	Coc	les :										
		A	В	C	D			Α	В		C	D
	(a)	4	3	1	2		(b)	3	4		2	1
	(c)	4	3	2	. 1		(d)	3	4		1	2
Ans.	(d)											
.31.	Cot	sider the	following	statem	ents :							
					n-ferrous a	llovs. di	amond	l is prefern	ed becau	ise it h	as	
					expansion	2.		wear resis				
		high com				4.	_	racture to				
		-	-	_	correct?							
	(a)	1 and 2		(b)	1 and 4		(c)	2 and 3		(d)	3 and 4	
Ans.	(a)											
.32.	In t	urning on	eration. th	ne feed	could be do	ubled to	incre	ase the me	tal remo	val rate	To keen	the same
					e radius of							
		halved			kept uncha			doubled		(d)	made for	ur times
Ans.	(b)			` '	•	J	` ,			` '		
.33.	The	radical f	orce in sir	ngle-no	int tool duri	na turni	ng one	ration vari	es hetw	een		
					cutting force			0.4 to 0.6			cutting fo	orce
					cutting force			0.5 to 0.6			_	
Ans.		0.0 0.0			anning rore	-	(4)	0.0 10 0.0				
		tch List-I	(Drill bit	s) with	List-II (Ap	plicatio	ns) an	d select th	e correc	t answ	er using	the codes
		en below			2.01 22 (1.1)	phound	,				B	177.11
	6	List-I					List-	**				
	٨	Core dri	11			1.		nlarge a ho	de to a	cartain	denth so	as to ac-
	A.	Cole uii	li.			1.		nodate the				as to ac-
	В.	Reamer				2.		rill and enl				hole in a
	D .	Realifer				۷.	castin		arge an	un oud	OXIDAIIB	noic in a
	C.	Counterl	ore drill			3.		ill a hole t	efore m	aking i	nternal th	read
	Ď.	Tap drill				4.		prove the				
		•						y of the al				
	Coa	les :							•			
		Α	В	C	D :			Α	B		C	D
	(a)	1	3	2	4		(b)	2	3		1	4
	(c)	2	4	1	3		(d)	3	2		4	1
lns.	(c)											
.35.	Con	sider the	following	reason	s:			,				
	1.	Grinding	wheel is	soft		2.	RPM	of grindir	g wheel	is too	low	
	3.	Cut is ver	ry fine			4.	An ir	nproper cu	itting flu	id is u	sed	
	A g	rinding w	heel may	becom	e loaded du	e to reas	ons st	ated at			4.	
		1 and 4		(b)	1 and 3		(c)	2 and 4		(d)	2 and 3	
	(a)											
				•		ults in tl	ne best	accuracy	of the ho	ole mac	le?	
Ans.	(b)	ich one o	f the follo	wing pi	0062262 162							
Ans. .36.	(b) Wh	ich one of Drilling	f the follo		Reaming		(c)	Broaching	3	(d)	Boring	
Ans. .36.	(b) Wh (a)		f the follo				(c)	Broaching	3	(d)	Boring	
Ans. .36. Ans.	(b) Wh (a) (b)	Drilling		(b)				•	*			is used to
Ans. .36. Ans.	(b) Wh (a) (b) A si	Drilling traight tee	eth slab m	(b)	Reaming	mm dia	meter	and 10 tee	th rotati	ng at 2	00 r.p.m.	
Ans. .36. Ans.	(b) Wh (a) (b) A si	Drilling traight tee	eth slab m er of 3 m	(b) illing c m thick	Reaming utter of 100	mm dia	meter	and 10 tee	th rotati	ng at 2	00 r.p.m.	
Ans. 0.36. Ans. 0.37.	(b) Wh (a) (b) A so rem toot	Drilling traight tee ove a lay	eth slab m er of 3 m	(b) illing c m thick will be	Reaming utter of 100	mm dia	meter ar. If th	and 10 tee	th rotati	ng at 2	00 r.p.m.	
Ans. 9.36. Ans. 9.37.	(b) Wh (a) (b) A so rem toot	Drilling traight tee love a lay th in this o	eth slab m er of 3 m	(b) illing c m thick will be	Reaming utter of 100 ness from a	mm dia	meter ar. If th	and 10 tee ne table fe	th rotati	ng at 2	00 r.p.m. iinute, the	
Ans. 0.36. Ans. 0.37.	(b) Wh (a) (b) A so rem toot	Drilling traight tee love a lay th in this o	eth slab m er of 3 m	(b) illing c m thick will be	Reaming utter of 100 ness from a	mm dia	meter ar. If th	and 10 tee ne table fe	th rotati	ng at 2	00 r.p.m. iinute, the	

1174									ОВЈ	ECTIVE	ETYPE Q	UESTIONS A	ND ANS
Ans.	(a)	Table fee	d = fe	ed/tee	th × N	o. of teeth ×	rpm						
å		$\frac{400}{10\times200}$	= fee	d per t	eeth =	0.2 mm.		¢.					
Q.38.	Co					es for the ma	anufac	cture of	gear	s:			
		Casting					2.	Powde					
		Machinir					4.						
						ing order of							
		1, 2, 3, 4			(b) 1	, 2, 4, 3		(c) 2	, 1,	4, 3		(d) 2, 1,	3, 4
Ans.													
Q.39.	Ma	tch List-I <i>List-I</i>	with I	_ist-II	and se	lect the corr	ect an	swer us <i>List-II</i>		he cod	es given	below the	Lists:
	A.	Die sink	ing	**			1.	Abrasi	ve je	t mach	ining		
	B.	Deburrir	ıg ·				2.	Laser t	ean	n mach	ining		
	C.	Fine hole	e drilli	ng (th	in mat	erials)	3.	EDM					
	D.	Cutting/s	sharpe	ning h	ard ma	aterials	4.	Ultrasc	nic	machii	ning		
							5.	Electro	che	mical g	grinding		
		des :											
		A .	В	/ (2 1	D			Á		В	С	D
	(a)		5	4	1	1		(b)	2		4	1	3
	(c)	3	1	2	2	5		(d)	4		5	1	3
Ans.	(a)					•							
Q.40.	Ma	tch List-I	with L	List-II	and se	lect the corr	ect an	swer usi	ng t	he cod	es given	below the	Lists:
		List-I								List-II			
		Drawing						1.		oap sol	lution		
		Rolling								amber			
		Wire dra	_							ilots			
	D.	Sheet me	etal op	eratio	ns usin	g progressiv	ve die			rater			
	Car	les :						5.	ır	oning			
		A	В	•	•	D			٨		D.	C	D
	(a)		5	1	- 1	4		(b)	A 4		В 1	. C 5	D
	(c)		2	3		4		(d)	5		2	. J	3
Ans.				•	,	4		(a)	5		2	1	3
		alidifiaati	on of	matal	d			ation fo	1	الماما		:_	
Q.41.		provided				casting, co	mpens					is y placed ris	
						ctional solid	ificati		SHIE	veu by	property	y placeu lis	eis
·		made by				donar song	iiicati	OII					
Ans.			r	₆ VI									
		correct s	eduen	ce of t	he give	n materials	in acc	cending :	orde	r of the	ir weld:	ahility is	
Q12.		MS, copp					III as					nium coppe	er
		copper, c										cast iron, M	
Ans.		- opp, -		,	,			(4)			ооррог,	oude iron, iv	
	` '	nsider the	follow	ing et	atemer	nte :							
V.42.						its : ie to non-un	iform					•	
		speed of			. ov ut	io to mon-an	2.	clearan	ce h	etweer	n tools		
		material p					4.	blank l			. 10013		
		ich of the			s are c	orrect?	••	Jane 1		ь			
		1, 2 and 3			_	, 3 and 4		(c) 1	. 3 a	nd 4		(d) 1, 2 a	nd 4
Ans.		_,			(-) -	, , ,		(-) *	,			,, ., u	- ·
	(/												

Q.44	Consider the following	ng operati	ions involved ir	forging a	hexagonal b	olt from a rou	nd bar stock.	whose
	diameter is equal to t	ne boit a	iameter :					
	1. Flattening	2.	Upsetting	3.	Swaging	4.	Cambering	
	The correct sequence							
A	(a) 1, 2, 3, 4	(b)	2, 3, 4, 1	(c)	2, 1, 3, 4	(d)	3, 2, 1, 4	
	. (a)							
Q.45	Which one of the follows	lowing is	the correct ten	perature	range for hot	extrusion of	aluminium ?	
/	(a) 300-340 C	(b)	350-400°C	(c)	430-480°C		550-650°C	
	. (b)							
Q.46	Consider the followir	ig statem	ents regarding	reaming p	rocess:			
	1. Reaming general	ly produc	es a hole large	r than its o	wn diameter	•		
	2. Generally rake ar	gles are	hot provided or	n reamers.				
	3. Even numbers of	teeth are	preferred in re	amer desi	gn.			
	Which of these statem							
Ans	(a) 1 and 2	(b)	2 and 3	(c)	1 and 3	(d)	1, 2 and 3	
	: 1		4				*	
Q.47.	A 60-teeth gear when	hobbed	on a differenti	al hobber	with a two-s	start hob, the	index change	e gear
	ratio is governed by v	vhich one	of the following	ng kinema	itic balance e	quations?		
	(a) 1 revolution of ge	ar blank	= 1/60 of hob r	evolution	S			
	(b) 1 revolution of ge(c) 1 revolution of ho	ai biank : h = 2/60	of blank royals	evolution	S			
	(d) 1 revolution of ho							
Ans.		0 - 1700	or orank revolu	ItiOiiS				
	Consider the following							
Q. 10.	1. A dedicated comp		nents: 2. Bulk memoi	o	T-1			
	Which of these compo		2. Dulk memor	y 3.	lelecommu	nication lines		
	(a) 2 and 3		1 and 2					
Ans.		(0)	1 and 2	(6)	1, 2 and 3	(a)	1 and 3	
	Transfer machines car	ستعمام هند						
Q.47.	(a) material processin			(1)		•		
	(c) material processin			(D)	materia! han	dling machin	es	
	(d) component feeder	s for auto	matic assembly	macinines	•			
Ans.	(b)	o tor date	matic assembl	y				
	• •	- ctata						·
Ø.50.	Consider the following 1. They reduce non-p	z stateme	nts regarding n				: .	
	3. They reduce maint	enance c	e time.	2. They	reduce fixtu	ring.		
	Which of these statem							
	(a) 1, 2 and 3	_	l and 2	(a)	2 and 3	(4)	1 1 2	•
Ans.		. (0)	and 2	(6)	2 and 5	(a)	1 and 3	
	Diamond pin location	is used in	a fixture beco	1100				1.
	(a) it does not wear ou	it	a fixture occa	usc				
	(b) it takes care of any		in centre dist	nce hetw	een two hole	•		
	(c) it is easy to clamp	the part of	n diamond nin		it is easy to r			
Ans.		punt	Giamona pin	u (u)	it is easy to i	nanuracture		
		f the	an maaaaaa '					
Z.J2.	The correct sequence (a) blending, compact	ing sint	en processes in	manutaci	uring by pov	vder metallur	gy is	_+
	(c) compacting, sizing			` '	diending, coi	mpacting, sizi	ng and sinter	ring
Ans.		, olehuin	g and sintering	(a)	compacting,	blending, sizi	ng and sinter	ring
. a.m.j4	()							

4	
	10

1176	• • • • • • •				OBJECTIVE TYPE	QUESTI	ONS AND ANSW	/ERS
Q.53.	The standard time of an relaxation and other all						rated at 80%. If	i the
	(a) 12.5 min	$(b) \cdot 10 min$		(c)	8 min	(d)	6.5 min	
Ans.	(b) Observed time = S	td. time $\times \frac{A^{1}}{Ratin}$	lowances g of worker	= 10	$\frac{0 \times 1.25}{.8} = 10 \text{ min}$.			
<u> </u>	MTM is a work measu (a) stopwatch study (c) pre-determined mo (c) MTM (Methods-times)	otion time systemenemen	ns t) is based on	(d) use	work sampling stu past data comparis of standard time fo	on	elements that l	nave
	been predetermiine	ed from long per	nods of obser	vati	on and analysis.			
Q.55.					$T_a = Actua$ k, $R = Rate p$			
	if $E = R \cdot T_a + \frac{R}{2} (T_s - T_a)$,), then the gra	ph between b	onus	s earned and time s	aved is	a	
Ans.	(a) straight line				concave curve			
Q.56. Ans.	A process of discovering job is called (a) job identification (b)						nature of a spe	
Q.57. Ans.	The type of layout suit (a) product layout (a)	able for use of to (b) job-sho	he concept, property property property in the concept, property property in the concept, property prop	rinci (c)	ples and approache fixed position layo	es of 'gr out (d)	roup technolog cellular layou	y'i t
Q.58.	A manufacturer's mas	ter product sche	dule of a pro-	duct	is given below:			
	Period Planned: Planned Production: Each product requires are 400 components o order quantity is 400.	Week-1 50 Week-4 100 a purchased corf type A in stoc	Week-2 100 Week-5 150 nponent A in k. The lead ti	its si me 1	Week-3 100 Week-6 50 ub-assembly. Befor	ponent	is 2 weeks and	d the
Ans	place the order for (a) 400 components in (c) 200 components in (d) 400 components in	n week-1 n week-1 and 20	`	(b)	400 components i			e et
Q.59.	. Consider the following	g costs :						

Q.60. An operations consultant for an automatic car wash wishes to plan for enough capacity to handle 60 cars per hour. Each car will have a wash time of 2 minutes, but there is to be a 20 per cent allowance

1. Cost of inspection and return of goods

Which of these costs are related to inventory carrying cost?

(b) 1, 3 and 4

5. Cost of negotiation with suppliers

3. Cost of scrap

(a) 1, 2 and 3

Ans. (d)

2. Cost of obsolescence

(d) 2, 4 and 5

4. Cost of insurance

(c) 2, 3 and 4

	for setup time, delays and			•
A	(a) 3	(b) 4	(c) 5	(d) 6
Ans.				
Q.61.	A company intends to us products. The previous ye period turned out to be 73 next period will be	ar's forecast has been 78	units and the actual demai	nd for the corresponding
Ans.	(a) 73 units(c) New forecast = Old	(b) 75 units I forecast + α (actual – of	(c) 77 units $1d \text{ forecast}$) = 78 + 0.2 (73	(d) 78 units $(3-78) = 77$
	(b) Dispatching initiates to sees them through to to(c) Both dispatching and(d) Both dispatching and successful completion	the execution of production their successful completion the execution of production in their successful completion expediting initiate the expediting maintain the	n plans, whereas dispatch on on plans, whereas expedit on ecution of production pla	ting maintains them and ting maintains them and tins
Ans.	(b)			
Q.63.	In a transportation problem	n North-West corner rule	would yield	
	(a) an optimum solution		(b) an initial feasible so	lution
	(c) a Vogel's approximate	solution	(d) a minimum cost solu	ution
Ans.	(b)		A Company of the Company	
Q.64.	In the solution of a linear of right-hand side b_i to the the problem has (a) infinite number of solution (c) degeneracy (b)	coefficients of entering		
Q.65.	Consider the following stagramming problem: 1. All the constraints are 2. The right-hand side of 3. All the decision variat Which of these statements	expressed in the form of each constraint equation oles are non-negative.	equations.	ard form of a linear pro-
	(a) 1, 2 and 3	(b) 1 and 2	(c) 2 and 3	(d) 1 and 3
Ans.	(a)			
Q.66.	The average time between min. The average time of t as per Poisson distribution a customer arriving at the (a) zero	he counter clerk to serve and the services are as pe	the customer is 3 min. The the exponential distribut	e arrivals are distributed
Ans.	(d) Utilisation parameter	$=\frac{\lambda}{\mu}=\frac{15}{20}=\frac{3}{4}$, Probab	pility that system is idle =	$1 - \frac{\lambda}{\mu} = 0.25$
	Probability that a cust	omer has to wait $= 0.75$.		
0.67	Time estimates of an activ			•
2.07.	Optimistic time $t_0 = 9$ day			time $t_{\epsilon} = 15$ days. The
	•			

1178

approximates probability of completion of this activity in 13 days is

(a) 16%

(b) 34%

(c) 50%

(d) 84%

Ans. (a) Expected time =
$$\frac{t_0 + 4t_e + t_p}{6} = \frac{9 + 4 \times 15 + 21}{6} = 15$$
 days

$$\sigma = \frac{t_p - t_0}{6} = \frac{21 - 9}{6} = 2$$

Probability of completing in 13 days is shaded area = 50% - Area for $1\sigma = 50 - 34 = 16\%$.

- Q.68. Which one of the following statements is not corrected in respect of dBase III plus?
 - (a) CREATE command is used for creating a new database file.
 - (b) The structure of the database file to be created, can be decided by the user.
 - (c) The structure of an existing database file, can be altered by 'CHANGE STRUCTURE' command.
 - (d) The package does not have facility for drawing graphs, curves, etc.

Ans. (c)

Q.69. Consider the following flow chart:

If the values of inputs are X = 20, Y = 6 and Z = 0, then the value of output Z will be

(a) 35

(b) 25

(c) 15

(d) 5

Ans. (c)

Ans. (d)

Q.70. A dealer sells a radio set at Rs. 900 and makes 80% profit on his investment. If he can sell it at Rs. 200 more, his profit as percentage of investment will be

(a) 160

(b) 180

(c) 100

(d) 120

Directions :

The following 15 (fifteen) items consist of two statements, one labelled the 'Assertion A' and the other labelled the 'Reason R'. You are to examine these two statements carefully and decide if the Assertion A and the Reason R are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your answer sheet accordingly.

Codes:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not a correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- **Q.71.** Assertion (A): It is possible to have more than one break-even point in break even charts. Reason(R): All variable costs are directly variable with production.

Ans. (d)

Q.72. Assertion (A): In case of control charts for variables, if some points fall outside the control limits, it is concluded that the process is not under control.

Reason (R): It was experimentally proved by Shewhart that averages of tour or more consecutive readings from a universe (population) or from a process, when plotted, will form a normal distribution curve.

Ans. (a)

Q.73. Assertion (A): In atomization process of manufacture of metal powder, the molten metal is forced through a small orifice and broken up by a stream of compressed air.

Reason (R): The metallic powder obtained by atomization process is quite resistant to oxidation.

Ans. (b)

Q.74. Assertion (A): Spherical washers are used to locate the job in the fixtures.

Reason (R): 3-2-1 principle should be adopted to locate the job.

Ans. (d

Q.75. Assertion (A): In a two high rolling mill there is a limit to the possible reduction in thickness in one pass. Reason(R): The reduction possible in the second pass is less than that in the first pass.

Ans. (b

Q.76. Assertion (A): In sheet metal blanking operation, clearance must be given to the die. Reason (R): The blank should be of required dimensions.

Ans. (d)

Q.77. Assertion (A): A long column of square cross section has greater buckling stability than a similar column of circular cross-section of same length, same material and same area of cross-section with same end conditions.

Reason(R): A circular cross-section has a smaller second moment of area than a square cross-section of same area.

Ans. (a)

Q.78. Assertion (A): In a composite shaft having two concentric shafts of different materials, the torque shared by each shaft is directly proportional to its polar moment of inertia.

Reason (R): In a composite shaft having concentric shafts of different materials, the angle of twist for each shaft depends upon its polar moment of inertia.

Ans. (c

Q.79. Assertion (A): Specimens for impact testing are never notched.

Reason (R): A notch introduces triaxial tensile stresses which cause brittle fracture.

Ans. (*d*)

Q.80. Assertion (A): Carbon forms interstitial solid solution when added to iron. Reason (R): The atomic radius of carbon atom is much smaller than that of iron.

Ans. (a)

Q.81. Consider the given figure:

Assertion (A): In order to have the same equilibrium speed for the given values of w, W and h, the masses of balls used in the Proell governor are less than those of balls used in the Porter governor. Reason (R): The ball is fixed to an extension link in Proell governor.

Ans. (a)

Q.82. Assertion (A): In locomotive engines, the reciprocating masses are only partially balanced. Reason (R): Full balancing might lead to lifting the locomotive engine off the rails.

Q.83. Assertion (A): Shafts supporting helical gears must have only deep groove ball-bearings. Reason (R): Helical gears produce axial thrusts.

Ans. (a)

Q.84. Assertion (A): In pulley design of flat belt drive, the cross-sections of arms are made elliptical with major axis lying in the plane of rotation.

Reason (R): Arms of a pulley in belt drive are subjected to torsional shear stresses and are designed for torsion.

Ans. (c)

Q.85. Assertion (A): In lifts, wire ropes are preferred over solid steel rods of same diameter. Reason (R): Wire ropes are more flexible than steel rods and also provide plenty of time for remedial action before failure.

Ans. (a)

- Q.86. The diameter of tommy bar for a screw jack is designed for
 - (a) bending moment due to effort applied
 - (b) torque on the tommy bar due to effort applied
 - (c) a percentage of axial loads
 - (d) some axial loads coupled with transverse loads

Ans. (a)

- Q.87. Centrifugal tension in belts is
 - (a) useful because it maintains some tension even when no power is transmitted
 - (b) not harmful because it does not take part in power transmission
 - (c) harmful because it increases belt tension and reduces the power transmitted
 - (d) a hypothetical phenomenon and does not actually exist in belts

Ans. (c)

- Q.88. In a single reduction, a large velocity ratio is required. The best transmission is
 - (a) spur gear drive
- (b) helical gear drive (c) bevel gear drive
- (d) worm gear drive

Ans. (a)

- Q.89. Which one of the following belts should not be used above 40°C?
- (a) Balata belt
- (b) Rubber belt
- (c) Fabric belt
- (d) Synthetic belt

Ans. (b)

Q.90. For obtaining the maximum shear stress induced in the shaft shown in the given figure, the torque should be equal to

(a) T

$$(c) \left[\left(Wl \right)^2 + \left(\frac{wL}{2} \right)^2 \right]^{\frac{1}{2}}$$

(d) $\left[\left\{ Wl + \frac{wL^2}{2} \right\}^2 + T^2 \right]^{\frac{1}{2}}$

Ans. (d)

- Q.91. A certain minimum number of teeth is to be kept for a gear wheel
 - (a) so that the gear is of a good size
- (b) for better durability
- (c) to avoid interference and undercutting
- (d) for better strength

Ans. (c)

- Q.92. In a single row deep groove ball-bearing, cages are needed to
 - (a) separate the two races
 - (b) separate the balls from the inner race
 - (c) separate the outer race from the balls
 - (d) ensure that the balls do not cluster at one point and maintain proper relative angular positions.

- Q.93. Which one of the following types of bearings is employed in shafts of gearboxes of automobiles?
 - (a) Hydrodynamic journal bearings
 - (b) Multi-lobed journal bearings
 - (c) Antifriction bearings
 - (d) Hybrid journal bearings

Ans. (c)

- Q.94. A hole is to be punched in a 15 mm thick plate having an ultimate shear strength of 3N-mm⁻². If the allowable crushing stress in the punch is 6 N-mm⁻², the diameter of the smallest hole which can be punched is equal to
 - (a) 15 mm

(b) 30 mm

(c) 60 mm

(d) 120 mm

Ans. (b) Min. dia. =
$$4t \frac{f_s}{f_c} = 4 \times 20 \times \frac{3}{6} = 30$$

Q.95. A column of square section 40 mm \times 40 mm, fixed to the ground carries an eccentric load P of 1600 N as shown in the figure.

If the stress developed along the edge CD is -1.2 N/mm^2 , the stress along the edge AB will be (a) -1.2 N/mm^2 (b) $+1 \text{ N/mm}^2$ (c) $+0.8 \text{ N/mm}^2$ (d) -0.8 N/mm^2

Ans. (d) Compressive stress at $CP = 1.2 \text{ N/mm}^2 = \frac{P}{A} \left(1 + \frac{6e}{b} \right) = \frac{1600}{1600} \left(1 + \frac{6e}{20} \right)$, or $\frac{6e}{20} = 0.2$

:. Stress at
$$AB = \frac{1600}{1600} (1 - 0.2) = 0.8 \text{ N/mm}^2 \text{ (compressive)} = -0.8 \text{ N/mm}^2$$
.

- Q.96. Cast iron is used for machine beds because of its high
 - (a) tensile strength

(b) endurance strength

(c) damping capacity

(d) compressive strength

Ans. (*d*)

- Q.97. If a compression coil spring is cut into two equal parts and the parts are then used in parallel, the ratio of the spring rate to its initial value will be
 - (a) 1

- (b) 2
- (c) 4 (d) indeterminable for want of sufficient data
- Ans. (c) When a spring is cut into two, no. of coils gets halved.
 - .. Stiffness of each half gets doubled.

When these are connected in parallel, stiffness = 2S + 2S = 4S.

Q.98. Match List-I with List-II and select the correct answer using the codes given below the Lists:

List-I List-II A. 4 links, 4 turning pairs 1. Complete constraint 2. Successful constraint B. 3 links, 3 turning pairs 3 Rigid frame C. 5 links, 5 turning pairs D. Footstep bearing 4. Incomplete constraint Codes: Α B C 3 2 (a) 3 4 2 · (b) 1

Ans. (d) 4 links and 4 turning pairs satisfies the equation $L = \frac{2}{3}(J+2)$

- :. It is case of complete constraint.
 - 3 links and 3 turning pairs form rigid frame. Foot step bearing results in successful constraint and 5 links and 5 turning pairs provides incomplete constraint.

Q.99. The relative acceleration of two points which are at variable distance apart on a moving link can be determined by using the

(a) three centres in line theorem

(b) instantaneous centre of rotation method

(c) Coriolis component of acceleration method

(d) Klein's construction

Ans. (b) The relative acceleration of two variable points on a moving link can be determined by using the instantaneous centre of rotation method.

0.100. Consider a four-bar mechanism shown in the given figure.

The driving link DA is rotating uniformly at a speed of 100 r.p.m. clockwise.

The velocity of A will be

- (a) 300 cm/s
- (b) 314 cm/s
- (c) 325 cm/s
- (d) 400 cm/s

Ans. (b) Velocity of
$$A = \omega r = \frac{2\pi \times 100}{60} \times 30 = 314$$
 cm/s

Q.101. Which one of the following pairs is correctly matched?

- (a) Governors ... Interference
- (b) Gears Hunting
- (c) Klein's construction Acceleration of piston (d) Cam Pinion

Ans. (c)

Q.102. The primary disturbing force due to inertia of reciprocating parts of mass m at radius r moving with an angular velocity ω is given by

(a)
$$m\omega^2 r \sin \theta$$

(b)
$$m\omega^2 r \cos \theta$$

(c)
$$m\omega^2 r \sin\left(\frac{2\theta}{n}\right)$$

(b)
$$m\omega^2 r \cos \theta$$
 (c) $m\omega^2 r \sin \left(\frac{2\theta}{n}\right)$ (d) $m\omega^2 r \cos \left(\frac{2\theta}{n}\right)$

Q.103. A link AB is subjected to a force $F(\rightarrow)$ at a point P perpendicular to the link at a distance a from the CG as shown in the figure.

This will result in

- (a) an inertia force $F(\rightarrow)$ through the CG and no inertia torque
- (b) an inertia force $F \cdot a$ (\supset) and no inertia force
- (c) both inertia force $F \rightarrow$ through the CG and inertia torque $F \cdot a \rightarrow$
- (d) both inertia force $F \leftarrow$ through the CG and inertia torque $F \cdot a \leftarrow$
- Ans. (c) Apply two equal and opposite forces F at CG. Thus inertia force $F(\rightarrow)$ acts at CG and inertia torque $F \cdot a$ (\supset)

Q.104. Consider the following statements:

A pinion of $14\frac{1^{\circ}}{2}$ pressure angle and 48 involute teeth has a pitch circle diameter of 28.8 cm. It has

1. module of 6 mm

2. circular pitch of 18 mm

3. addendum of 6 mm

4. diametral pitch of $\frac{11}{113}$

Which of these statements are correct?

- (a) 2 and 3
- (b) 1 and 3
- (c) 1 and 4
- (d) 2 and 4

Ans. (b) Module =
$$\frac{d}{T} = \frac{288}{48} = 6mm$$

(Thus 1 is correct)

(a) 1, 3, 2, 4

condition that the

Ans. (b) Watt, Porter, Proell, Hartnell.

Ans. (d) First three conditions are essential.

The correct sequence of development of these governors is (b) 3, 1, 4, 2

(a) sum of the two masses must be equal to that of the rigid body

	Circular pitch = $\frac{\pi d}{T} = \pi \times 6 = 18.84 mm$	(Thus 2 is not corre	ct)
	addendum = $1 \mod ule = 6 mm$	(Thus 3 is correct)	
	diametral pitch = $\frac{T}{d} = \frac{1}{6}$	(Thus 4 is not correct	et).
Q.105.	For a given lift of the follower in a given angular m follower will be the least when the profile of the (a) such that the follower motion is simple harmo (b) such that the follower motion has a constant (c) a straight line, it being a tangent cam (d) such that the follower velocity increases line (d) such that	cam during the rise portion onic velocity from start to end early for half the rise por	is
Ans.	linearly for the remaining half of the rise port	ion.	
	Consider the following statements regarding the gears:	They are difficult to man	ufacture.
Ans.	(a) 1, 2 and 3 (b) 1, 2 and 4 (a) Cost of production of conjugate teeth, being d	(c) 2, 3 and 4 lifficult to manufacture is h	(d) 1, 3 and 4 igh.
Q.107.	The motion transmitted between the teeth of two (a) sliding (c) rotary (a)	spur gears in mesh is general (b) rolling (d) party sliding and pa	•
	In a single slider four-bar linkage, when the slide	r is fixed, it forms a mecha	nism of
Ans.	(a) hand pump(c) quick return	(b) reciprocating engine(d) oscillating cylinder	
	Consider the following parameters: 1. Limit of peripheral speed 2. 3. Coefficient of fluctuation of speed 4. Which of these parameters are used in the calculation of 1, 3 and 4 (a) 1, 3 and 4 (b) 2, 3 and 4 (a) Limit of centrifugal stress is not considered.	Limit of centrifugal stress Weight of the rim ation of the diameter of fly (c) 1, 2 and 3	
Q.110.	Consider the following speed governors: 1. Porter governor 2. Hartnell governor	3. Watt governor	4. Proell governor

(c) 3, 1, 2, 4

Q.111. If a two-mass system is dynamically equivalent to a rigid body, then the system will not satisfy the

(d) total moment of inertia about the axis through c.g. must be equal to that of the rigid body

(b) polar moment of inertia of the system should be equal to that of the rigid body (c) centre of gravity (c.g.) of the system should coincide with that of the rigid body

(d) 1, 3, 4, 2

- Q.112. A rigid shaft when laid on horizontal parallel ways will not roll if the
 - (a) centre of gravity falls on parallels
- (b) centre of gravity lies on the shaft axis
- (c) horizontal moments are large
- (d) vertical moments are large

Ans. (b)

- Q.113. If the ratio of the length of connecting rod to the crank radius increases, then
 - (a) primary unbalanced forces will increase
- (b) primary unbalanced forces will decrease
- (c) secondary unbalanced forces will increase
- (d) secondary unbalanced forces will decrease
- Ans. (d) Secondary force only involves ratio of length of connecting rod and crank radius and is equal to

$$m\omega^2 r \frac{\cos 2\theta}{n}$$
. If *n* increases, value of secondary force will decrease.

- Q.114. If a spring-mass-dashpot system is subjected to excitation by a constant harmonic force, then at resonance, its amplitude of vibration will be
 - (a) infinity

- (b) inversely proportional to damping
- (c) directly proportional to damping
- (d) decreasing exponentially with time

Ans. (a)

- Q.115. In a forced vibration with viscous damping, maximum amplitude occurs when forced frequency is
 - (a) equal to natural frequency
- (b) slightly less than natural frequency
- (c) slightly greater than natural frequency
- (d) zero

- Q.116. The value of the natural frequency obtained by Rayleigh's method
 - (a) is always greater than the actual fundamental frequency
 - (b) is always less than the actual fundamental frequency
 - (c) depends upon the initial deflection curve chose and may be greater than or less than the actual fundamental frequency
 - (d) is independent of the initial deflection curve chosen

Ans. (d)

- Q.117. In a multi-rotor system of torsional vibration maximum number of nodes that can occur is

- (b) equal to the number of rotor plus one
- (c) equal to the number of rotors
- (d) equal to the number of rotors minus one

- Q.118. A rotating shaft carries a flywheel which overhangs on the bearing as a cantilever. If this flywheel weight is reduced to half of its original weight, the whirling speed will
 - (a) be double

(b) increase by $\sqrt{2}$ times

(c) decrease by $\sqrt{2}$ times

(d) be half

Ans. (b) Whirling speed $\propto \sqrt{\frac{1}{r}}$

Q.119. Consider the gear train shown in the given figure and table of gears and their number of teeth.

Gear : A B C D E F No. of teeth : 20 50 25 75 26 65

Gears BC and DE are moulded on parallel shaft rotating together.

If the speed of A is 975 r.p.m., the speed of F will be

(a) 39 r.p.m.

(b) 52 r.p.m.

(c) 75 r.p.m.

(d) 80 r.p.m.

Ans. (b) Speed ratio $\frac{N_F}{N_A} = \frac{T_A \times T_C \times T_E}{T_B \times T_D \times T_F} = \frac{20 \times 25 \times 26}{50 \times 75 \times 65} = \frac{4}{75}$

$$N_F = 975 \times \frac{4}{75} = 52 \text{ rpm}$$

- Q.120. Consider the following statements in respect of introduction of feedback in a control system :
 - 1. It enhances its gain.

- 2. It attenuates the unwanted noise.
- 3. It helps in improving the accuracy of the system.

Which of these statements are correct?

- (a) 2 and 3
- (b) 1, 2 and 3
- (c) 1 and 3
- (d) 1 and 2

Ans. (c)

I.E.S. (Objective)

MECHANICAL ENGINEERING-2000

PAPER - I

- Q. 1. An aeroplane travels at 400 km/hr at sea level where the temperature is 15°C. The velocity of the aeroplane at the same Mach number at an altitude where a temperature of -25°C is prevailing, would be
 - (a) 126.78 km/hr
- (b) 130.6 km/hr
- (c) 371.2 km/hr
- (d) 400.10 km/hr

Ans. (d)

- Q. 2. The plot for the pressure ratio along the length of the convergent-divergent nozzle is shown in the given figure. The sequence of the flow conditions labelled 1, 2, 3, and 4 in the figure is respectively
 - (a) supersonic, sonic, subsonic and supersonic
 - (b) sonic, supersonic, subsonic and supersonic
 - (c) subsonic, supersonic, sonic and subsonic
 - (d) subsonic, sonic, supersonic and subsonic

Ans. (d)

- Q. 3. If the full-scale turbine is required to work under a head of 30 m and to run at 428 r. p. m., then a quarter-scale turbine model tested under a head of 10 m must run at
 - (a) 143 r. p. m.
- (b) 341 r. p. m.
- (c) 428 r. p. m.
- (d) 988 r. p. m.

Plain shock

Ans. (d)

Q. 4. The dimensionless group formed by wavelength λ , density of fluid ρ , acceleration due to gravity g and surface tension σ , is

$$(a) \frac{\sigma}{\lambda^2 g\rho}$$

$$(b) \frac{\sigma}{\lambda g^2 \rho}$$

$$(c)\frac{\sigma g}{\lambda^2 \rho}$$

$$(d) \frac{\rho}{\lambda^2 \rho \sigma}$$

Length

Ans. (a)

- Q. 5. Which one of the following sets of standard flows is superimposed to represent the flow around a rotating cylinder?
 - (a) Doublet, vortex and uniform flow
- (b) Source, vortex and uniform flow
- (c) Sink, vortex and uniform flow
- (d) Vortex and uniform flow

Ans. (a)

Q. 6.

A float of cubical shape has sides of 10 cm. The float valve just touches the valve seat to have a flow area of 0.5 cm^2 as shown in the given figure. If the pressure of water in the pipeline is 1 bar, the rise of water level h in the tank to just stop the water flow will be
(a) 7.5 cm (b) 5.0 cm (c) 2.5 cm (d) 0.5 cm

Ans. (b)

Atmosphere

Q. 7. A U-tube manometer is connected to a pipeline conveying water as shown in the given figure. The pressure head of water in the pipeline is

(a) 7.12 m

(b) 6.56 m

(c) 6.0 m

(d) 5.12

Ans. (c)

Q. 8. The eye of a tornado has a radius of 40 m. If the maximum wind velocity is 50 m/s, the velocity at a distance of 80 m radius is

(a) 100 m/s

(b) 2500 m/s

(c) 31.25 m/s

(d) 25 m/s

Ans. (d)

Q. 9. If a vessel containing liquid moves downward with constant acceleration g, then

(a) the pressure throughout the liquid mass is atmospheric

(b) the pressure in the liquid mass is greater than the hydrostatic pressure

(c) there will be vacuum in the liquid

(d) the pressure throughout the liquid mass is greater than atmospheric

Ans. (a)

Q. 10. Improved streamlining produces 25% reduction in the drag coefficient of a torpedo. When it is travelling fully submerged and assuming the driving power to remain the same, the increase in speed will be

(a) 10%

(b) 20%

(c) 25%

(d) 30%

Ans. (a)

Q. 11. If a bullet is fired in standard air at 15°C at the Mach angle of 30°, the velocity of the bullet would be

(a) 513.5 m/s

(b) 585.5 m/s

(c) 645.5 m/s

(d) 680.5 m/s

Ans. (d)

Q. 12. A stream function is given by $(x^2 - y^2)$. The potential function of the flow will be

(a) 2m + 4r

(b) 2xy + constant

(c) $2(x^2-y^2)$

(d) 2xy + f(y)

Ans. (b)

Q. 13. The height of a cylindrical container is twice that of its diameter. The ratio of the horizontal forces on the wall of the cylinder when it is completely filled to that when it is half filled with the same liquid, is

(a) 2

(b) 3

(c) 3.5

(d) 4

Ans. (a)

Q. 14. The velocities and corresponding flow areas of the branches labelled 1, 2, 3, 4 and 5 for a pipe system shown in the given figure are given in the following table:

Pipe Label 1	Velocity	Area
1	5 cm / s	4 sq cm
2	6 cm / s	5 sq cm
3	V_3 cm / s	2 sq cm
4	4 cm / s	10 sq cm
5	V ₅ cm / s	8 sq cm

		HOW BOEVED I ALEKS		1109
	The velocity V_5 would b	e		
	(a) 2.5 cm/s	(b) 5 cm/s	(c) 7.5 cm/s	(d) 10 cm/s
Ans.	(b)			
Q. 15. Ans.	that of the first pipe. second pipe is (both the (a) 8	series to another pipe value ratio of frictional late pipes have the same (b) 4	whose diameter is twice nead losses for the first frictional constant) (c) 2	and length is 32 times pipe to those for the (d) 1
			4 0	
Ans.	 (a) Hydraulic grade line (b) Energy grade line lie (c) Energy grade line lie other by a vertical (d) The hydraulic grade 	s above the hydraulic gra lies above the hydraulic distance equal to the ve	the same in fluid flow pr de line and is always para grade line and they are	llel to it e separated from each
	•	Naga in tura mimas hawir		£ 0.000 1.0000
Ans.	a Reynolds number of (a) the pipe of relative ro (b) the pipe of relative ro (c) both pipes have the s (d) no comparison is pos	1815, then oughness of 0.003 has a houghness of 0.003 has a lo	ower friction factor	or 0.002 and 0.003, at
Q. 18.	A pipeline connecting	two reservoirs has its d	liameter reduced by 20%	due to denosition of
_	chemicals. For a given	head difference in the	reservoirs with unalter	ed friction factor, this
Ans.	would cause a reduction (a) 42.8%	on in discharge of (b) 20%	(c) 17.8%	(d) 10.6%
	• •	er has two orifices of	the same size at depths	of 40 am and 00 am
	below the free surface (a) 1:1	of water. The ratio of (b) 2:3	discharges through these (c) 4:9	orifices is (d) 16:81
Ans.				
	a manometric fluid of revelocity of 1.2 m/s will (a) 183.5 mm	elative density 1.4. The de	of water using a differential effection of the gauge fluid tube may be assumed to (c) 5.24 mm	l when water flows at a
Ans.	• •			
Q. 21.	The development of bo in the given figure	oundary layer zones lab	elled P, Q, R and S ove	r a flat plate is shown
·		P		

Based on this figure, match List (Boundary layer zones) with List II (Types of boundary layer) and select the correct answer using the codes given below the Lists:

	iuju	i) und s	CICCI III		nicci ansi	ver using	uic (coucs g	IVCII D	DIOW III	ic List	э.			
		List I							List II						
	A.	P					1.	Transit	tional						
	В.	Q					2.	Lamin	ar visc	ous sub	-laver				
	C.	R					3.								
	D.	S					4.								
	Code						7.	Tulbul	Ciit						
		A	В	С	D				Α	В	С	D			
	(a)	3	1	2	4			(b)	3	2	1	4			
	(c)	4	2	1	3			(d)	4	1	2	3			
Ans.	7 -							()		-	_				
		ne of 20	om dia	mata	- and 20 k	m lanath te		owa oil	from a	tonkon	to the	hana wit	الم المامينة		
ų. <i>22</i> .													h a velocity	,	
		.316 HVS).25 kW		ow i	s iaminar. (<i>b</i>) 8.36 k	If $\mu = 0.1$	IN-II		•	require					
Ans.		7.23 K W			(<i>v</i>) 6.30 K	. v v		(c) 7.63	KW		(a)) 10.13 k	vv		
					ā							_			
Q. 23.										te, the	bound	lary laye	r thickness	į	
			ith its c	iistai		m the lead	ung					4/5			
A	(a) 2	C			(b) $X^{1/5}$			$(c) X^{2/3}$	•		(d)	$X^{4/5}$			
Ans.	` '														
Q, 2	4. Se	paration	of fluid	lflov	v is caused	l by									
			•			ection of flo	ow	(b) re	ductio	n of the	bound	lary laye	r thickness		
		resence	of adve	rse p	ressure gr	adient		(d) p	resence	of fav	ourable	e pressur	e gradient		
Ans.	(c)														
Q. 25.		en press body is			er a body	is large a	s co	mpared	to the	frictio	n drag	, then th	e shape of	•	
		un aerofo			(b) a strea	amlined bo	dv	(c) a tw	o-dim	ensiona	l body	(d) a bli	uff body		
Ans.					` '		•	,	,		•	, , , , , , ,			
O. 26.	A c	ircular c	vlinder	of 4	400 mm d	iameter is	rota	ited abo	nt its :	axis in	a strea	am of w	ater having	r	
C	a ui	niform v	velocity	of	4 m/s. W	hen both	the	stagnati	ion po	ints co	incide	, the lift	force ex-		
	-	160 kN/r	•	•	(b) 10.05	kN/m		(c) 80 l	cN/m		(d	40.2 kN	l/m		
Ans.	(b)				` '			` '			X ,	,			
Q. 27.	the	automol automol stance is	oile is n	ving novi	at a velo	city of 401 locity of 5	km/h 50km	r is exp n/hr, the	erienc powe	ing a v r requi	vind re	esistance overcom	of 2kN. If the wind	f	
		13.4kW	•		(b) 3.125	₽W		(c) 2.5	νw		(4	27 776	LW		
Ans.	` '	1J.7K 11			(0) 3.123	K VV		(6) 2.3	K VV		(a)	27.776	K VV		
		1	:	1											
Ų. 28.	C_p i	s equal	to										coefficient		
	(a) 1	l — sin² (9		(b) $1-2$	$\sin^2 \theta$		(c) 1 –	4 sin ² (Э	(d)) 1 – 8 sii	$n^2 \Theta$		
Ans.	(a)														
Q. 29 .	If th	e upstr	eam Ma	ach i	number of	f a normal	sho	ck occi	ırring	in air ((k = 1.4)	4) is 1.6	8, then the	;	
					shock is							,	-, 14		
	(a) ((b) 0.646			(c) 0.33	36		(d)	0.564			
Ans.					•						` .				

	Which one of the follow mining the final proper (a) The first and second (b) The second law of th (c) Perfect gas relationsh (d) The first law of them	ties during an adiabatic laws of thermodynamics ermodynamics and stead ip and steady flow relation	mixing process ? y flow relations ons	ectly involved in deter-
Ans.	(d)		•	
	The air with enthalpy temperature at which i compressor as the air p required for an air mas (a) 30kW	ts enthalpy becomes 20 basses through it. Negle	00kJ/kg. The loss of he	at is 40kJ/kg from the
Ans.	(a)			
Q. 32.	2. Perpetual motion mac3. A closed system does	odynamics is a law of co- hine of the first kind con- not exchange work or en rmodynamics stipulates t	nservation of energy. verts energy into equivale ergy with its surrounding the law of conservation of (c) 2, 3 and 4	zs.
Ans.	· ·	(b) 2 and 4	(c) 2, 3 and 4	(a) 1, 2 and 3
Q. 33.	A heat engine receives kW of heat at 5°C. Co 1. Carnot cycle Which of these cycles co (a) 1 alone (c) 1 and 2		ermodynamic cycles in 3. Irreversible cycle	this regard :
Ans.	(a)			
Q. 34. Ans.	The process 1-2 for ste (a) isobaric (b) iser (c)		•	
	In which one of the fol	lowing working substar	nces, does the relation $\frac{7}{7}$	$\frac{2}{1} = \left(\frac{p_2}{p_1}\right)^{0.286} \text{ hold good}$
	if the process takes pla (a) Wet steam (c) Petrol vapour and air	nce with zero heat trans		
Ans.	(b)			
Q. 36.	 pressure decreases an temperature decreases temperature and the d 	eam is throttled from a d the volume increases and the steam becomes ryness fraction increase thout any change in enthal	•	
	(a) 1 and 4	(b) 1, 2 and 4	(c) 1 and 3	(d) 2 and 4
Ans.	(a)			

Q. 37. 10kg of water is heated from 300 K to 350 K in an insulated tank due to churning action by a stirrer. The ambient temperature is 300 K. In this context, match List I and List II and select the correct answer using the codes given below the Lists:

			List	1				List	: II			
	A.	Enth	alpy ch	ange		1.	1	2.2 kJ/	'kg			
	В.	Entre	opy cha	nge/kg		2.	1	968 kJ				
	C.	Avai	lability	/kg		3.	2	090 kJ				
	D.	Loss	of avai	lability		4. 656 J/kg-k						
	Cod	es:										
		Α	В	C	D			Α	В	C	D	
	(a)	3	1	4	2		(b)	2	4	1	3	
Ans	(c) . (c)	3	4	1	2	((d)	2	1	4	3	
		which	one of	the follo	owing situations the	entrony	chai	nge wi	ll be ne	gative		
	(b) 1 (c) I (d) 1 (a) 3 (a) 5 (a) Co	Air is c Heat is Air exp onsider	supplies ands is	sed to hed to air entropio	ally from 6 bars to 3 half the volume at coat constant volume cally from 6 bars to the thermodynamic relations.	onstant printill the printill t			comes t	hree fol	lds	
			$\iota + pdv$					u – pd				
			i + vdp					$h - vd_l$	p			
					ynamic relations a							
Ana		l and 3	j	((b) 1 and 4	(c)	2 an	id 3		(d)	2 and 4	
	. (b)											
Q. 40	α ar	ndβ ar	idded to re consi qual to	o a clostants. T	ed system during a he entropy change	of the s	le p syste	rocess em as	is give	en by Queratur	$\theta = \alpha T + \beta$ re changes	T^2 , where from T_1
			T_2-T_1		_	L.				$(2-T_1^2)$	$]/T_1$	
Ama	(c)	$\frac{\alpha}{2}(T_2^2)$	$-T_1^2$) +	$-\frac{\beta}{3}(T_2^3-$	T_1^3) T_1^2	$(d) \alpha$	ln ($\left(\frac{T_2}{T_1}\right) +$	2β (T ₂	$-T_{1}$)		
VIIS	. (0)							,	`			
Q. 41	. The	interna	al energ	y of a g	gas obeying van der	Waals ed	quati	ion p	$+\frac{a}{v^2}$	(v-b)	= RT depe	nds on its
	(a) t	emper	ature			(b) ter	npei	rature a	and pre	ssure		
		emper	ature an	id specif	fic volume	(<i>d</i>) pro	essu	re and	specifi	c volum	ne	
	. (b)											
Q. 42					statements:							
				-	gas law at very							
		_	peratu		2. high pressures	3. I	ow p	oressur	es			

(c) 2 alone

(d) 3 alone

Which of these statements is/are correct?

(b) 1 and 3

(a) 1 alone

Ans. (d)

	$(a) \left(\frac{dP}{dP} \right)_{sat} = \frac{1}{Tv_{fg}}$	$(b) \left(\frac{dT}{dT} \right)_{sat} = \frac{1}{T v_{fg}}$	$\left(\frac{c}{dP}\right)_{sat} = \frac{1}{v_{fg}}$	$(d) \left(\frac{dP}{dT}\right)_{kat} = \frac{Th_{fg}}{v_{fg}}$
Ans.	(<i>b</i>)			
Q. 44.	The capacity of an is capable of	air compressor is spe	cified as 10 m ³ /min. It	means that the compressor
		f compressed air per mi	nute	
		³ of free air per minute		
		f compressed air at NTI	p	
		³ of standard air per min		
Ans.	•	•		
		ressor takes in air at	1.1 bars and discharges	s at 20 bars. For maximum
Q. 15.		mediate pressure is		
	(a) 10.55 bars	(b) 7.33 bars	(c) 5.5. bars	(d) 4.7 bars
Ans	. (d)			
Q. 46	For the same maxi	mum pressure and hea	at input, the most efficient	ent cycle is
	(a) Otto cycle		(b) Diesel cycle	
	(c) Brayton cycle		(d) Dual combustion	cycle
Ans	. (a)			
Q. 47	. Consider the follow			
			octane and isoheptane fu	els which are parattins.
		added to gasoline to inc		dan asita an anont ntuga
			ng agent to remove lead o	reposits on spark plugs.
	Which of these state	need not necessarily cau	ise knocking.	
		(b) 2, 3 and 4	(c) 1 and 4	(d) 1, 2 and 3
Ans	(a) 1, 2, 3 and .	(0) 2, 0 4.14	(0) 1 4	
	. Consider the follow	wing statements:		ut.
Q			reases emission of oxides	s of nitrogen from the engine.
	2. When the carbu	rettor throttle is sudde	nly opened, the fuel air	mixture leans out temporarily
	causing engine			
				entire part-throttle operation.
	_			nigh velocity air stream wher
		oduced at the main ve	nturi throat.	
		itements are correct?	(c) 2 and 3	(d) 2 and 4
A	(a) 1 and 3	(b) 1 and 2	(c) 2 and 3	(a) Land 7
	S. (c)	fuel matic by mass) y	with I lot II (Engine on	aration mode) and select the
Q. 49	. Match List I (Air	ng the codes given be	VIII LIST II (Eligille op	eration mode) and select the
		ing the codes given be	List II	
	List I			
	A. 10:1		1. CI engine part lo	
	B. 16:1		2. SI engine part lo	ad
	C. 35:1		3. SI engine idling	
	D. 12.5:1	•	4. CI full load	en et
			5. SI full load	

	Code	es :												
		Α	В	C	\mathbf{D}				Α	В	С	D		
	(a)	3	2	1	5	=		(b)	4	2	1	5		
	(c)	3	1	2	4			(d)	4	1	2	3		
Ans.	(a)													
Q. 50.	Cons	sider th	e follo	wing :	statemen	ts:								
	In down draft carburettor, a hot spot is formed at the bottom wall which is common for intak and exhaust manifolds. This helps to 1. improve evaporation of liquid fuel 2. provide higher thermal efficiency 3. reduce fuel consumption 4. lower the exhaust gas temperature													
					n s are corre	ect?	4. low	er th	e exha	ust gas	tempe	rature		
Ans.		, 2 and	4	((b) 1, 2 aı	nd 3	(c)	1, 3	and 4		(d)	2, 3 and 4	1	
	 2. 51. In a petrol engine car, which one of the following performance characteristics is affected by the front-end volatility of the gasoline used? (a) Hot starting and vapour lock (b) Engine warm-up and spark plug fouling (c) Spark plug fouling and hot starting (d) Vapour lock, engine warm-up and spark plug fouling Ans. (d) 												fected by	
Q. 52.	In tu	rbo pro	p, the	expan	sion of g	gases take:								
Ans.	(c) 50	00% in th			50% in t	he nozzle	(b) 80 ^o (d) 10 ^o				nd 20%	in the no.	zzle	
Q. 53. Ans.	(a) he	most co	mmor ter			ator in nu and bricks		wer steel	-	is	(d)	graphite		
Q. 54.	Shiel	ding in	a nuc	lear re	actor is	generally	done to	prot	ect ag	ainst				
	(a) ex	ccess ele	ectrons	3			(b) X-rays							

Direction: The following (12) items consist of two statements, one labelled the 'Assertion (A)' and the other labelled the 'Reason (R)'. You are to examine these two statements and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your Answer Sheet accordingly.

(d) neutron and gamma rays

Codes :

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false

(c) α-and-β rays

- (d) A is false but R is true
- Q. 55. Assertion (A): If a cube is placed in a liquid with two of its surfaces parallel to the free surface of the liquid, then the pressures on the two surfaces which are parallel to the free surface, are the same.

Reason (R): Pascal's law states that when a fluid is at rest, the pressure at any plane is the same in all directions.

Ans. (d)

Q. 56. Assertion (A): Catalytic converters for reduction of oxides of nitrogen in engine exhaust cannot be used with leaded fuels. Reason (R): Catalyst will be removed due to chemical corrosion by lead salts.

Ans. (a)

Q. 57. Assertion (A): The CI engine is basically more suitable for supercharging than the SI engine. Reason (R): In the CI engine supercharging tends to prevent diesel knocking.

Q. 58. Assertion (A): With the help of a Bomb calorimeter, the lower calorific value of a solid or liquid fuel can be determined, as the water vapour formed is carried away by the exhaust gases. Reason (R): The lower calorific value of a fuel is the net value of heat available found by subtracting the latent head of the water formed and carried away by exhaust gas from the higher calorific value.

Ans. (a)

Q. 59. Assertion (A): The thermal efficiency of Brayton cycle would not necessarily increase with reheat. Reason (R): Constant pressure lines on the T-s diagram slightly diverge with increase in entropy. Ans. (b)

O. 60. Assertion (A): A thermodynamic system may be considered as a quantity of working substance with which interactions of heat and work are studied. Reason (R): Energy in the form of work and heat are mutually convertible.

Ans. (*b*)

Q. 61. Assertion (A): All analyses of heat transfer in turbulent flow must eventually rely on experimental data.

Reason (R): The eddy properties vary across the boundary layer and no adequate theory is available to predict their behaviour.

Ans. (a)

Q. 62. Assertion (A): The leakage heat transfer from the outside surface of a steel pipe carrying hot gases is reduced to a greater extent on providing refractory brick lining on the inside of the pipe as compared to that with brick lining on the outside.

Reason (R): The refractory brick lining on the inside of the pipe offers a higher thermal resistance.

Ans. (a)

Q. 63. Assertion (A): Thermal conductance of heat pipe is several hundred times that of the best available metal conductor under identical conditions.

Reason (R): The value of latent heat is far greater than that of specific heat.

Ans. (a)

Q. 64. Assertion (A): The efficiency of a pump is generally less than that of a turbine.

Reason (R): Although the losses in the two types of machines are of the same kind, the losses in pumps are more due to eddies and turbulence.

Ans. (a)

Q. 65. Assertion (A): Modern turbines have velocity compounding at the initial stages and pressure compounding in subsequent stages.

Reason (R): Excessive tip leakage occurs in the high pressure region of reaction blading.

Ans. (d)

Q. 66. Assertion (A): The air-fuel ratio employed in a gas turbine is around 60: 1

Reason (R): A lean mixture of 60: 1 in a gas turbine is mainly used for complete combustion.

Ans. (c)

Ans. (a)

1196								0	BJECT	TIVE T	YPE	QUEST	IONS AN	ID ANSV	VERS
Q. 67.	Wh (a)	Intak	ce and	delive	ry po	airs of features ompression	sion is	compres	ssors		s N	ОТ соі		natched	
			centric			ompression	cymari	cai rotor	set						
	(b)	Inter press	mittent sure, slo	discha	arge r ed an	equires rece d lubrication	iver, pro n problei	oduces h	igh	:	Re	ciproca	ating co	mpresso	or
	(c)	Cont mucl	inuous 1 highe	flow,	radia l and i	ıl flow, han fitted into de	dles lar	ge volu aero-eng	me, gine	;	Ce	ntrifug	al comp	ressor	
	(<i>d</i>)	Suco passa	cessiv	e pres lades a	sure	drops thremed from a	ough co	ontract	ing	:	Ax	ial flo	a, combi	essor	
Ans.	(c)														
Q. 68.	1. F 2. S 3. E	orced coot blo lectros	irculati wers at tatic pro	ion is a e used ecipita	lway: for c tor is	ments: s used in hig leaning tube used to rem	surface ove fly a	s at regu	ılar ir	iterva	ıls.				
A	Which of these statements are correct? (a) 1, 2 and 3 (b) 2 and 3 (c) 1 and 3 (d) 1 ns. (b)												1 and 2		
Q. 69. Ans. Q. 70.	(a) : (c) : (c) Mat	subcriti subcritic	cal pres cal as v	ssure vell as ompon	super	critical pres	sures	(<i>b</i>) supe (<i>d</i>) criti-	cal pi	essur	e on	ly	t answe	r using	the:
	cod	es give	n belo	w the	Lists	:								C	
			List I						Li	st II					
			e plug off coc		1. 2. 3. 4. 5.	Controls so Controls ra Puts off fu Removes r Drains off v	ate of wa rnace fir nud and	iter flow e when dirt coll	wate: lected	leve	e bo	ttom o	f boiler		
	Cod	es:			٥.	Diams on V	vator con	iccicu by	paru	ai con	uens	ation o	i steam i	n pipes	
		Α	В	C	D				Α	В		С	D		
	(a)		1	4	2			(<i>b</i>)	1	3		5	4		
Ans.	(c)	5	3	4	2			(<i>d</i>)	1	2		5	4		
		ial adn	siccion	ntaam	l.	:	1 **								
	(a) s (b) r (c) r	steam is nozzles nozzles	admite occupy do not	ted par the co occupy	tially omple y the o	ine refers to into the blace te circumfer complete cir into the blace	des throu rence lea cumfere	ugh noza ading intended	zles to the	blade	e ani	nulus inulus			

Q. 72. Consider the following statements regarding a 100% reaction turbine : 1. Change in absolute velocity of steam across the moving blades is zero. 2. Change in absolute velocity of steam across the moving blades is negative.

3. Enthalpy drop in fixed blades is zero.

Which of these statements is/are correct?

(a) 1 alone

(b) 2 alone

(c) 2 and 3

(d) 1 and 3

Ans. (c)

Q. 73. Which one of the following pairs is NOT correctly matched?

(a) Internal efficiency of steam turbine

(b) Stage efficiency of a turbine

Product of stage efficiency and reheat factor Ratio of adiabatic heat drop to the isentropic

heat drop per stage

(c) Dryness fraction of steam within a stage

Decreases due to reheating

(d) Steam condensation during expansion

Enhances blade erosion

through the turbine

Ans. (c)

Q. 74. Consider the following statements:

For supersaturated flow through a steam nozzle, the

1. enthalpy drop reduces further

2. exit temperature increases

3. flow rate increases

Which of these statements are correct?

(a) 1, 2 and 3

(b) 1 and 2

(c) 2 and 3

(d) 1 and 3

Ans. (d)

Q. 75. Velocity triangle for a reaction turbine stage is shown in the given figure. $(AB = v_1 = \text{absolute})$

velocity at rotor blade inlet; $CB = w_1 = \text{relative}$ velocity at rotor blade inlet; $CE = w_2 = \text{relative}$ velocity at rotor blade exit and CD = CB) The ratio of reaction force to impulse force is

(a) CE/CB

(b) CD/CE

(c) DE/BD

(d) AE/AB

Ans. (c)

Q. 76. Consider the following statements:

1. Throttle governing improves quality of steam in the last few stages.

2. Internal efficiency of steam is not seriously effected by throttle governing.

3. Throttle governing is better than nozzle governing.

Which of these statements are correct?

(a) 1, 2 and 3

(b) 1 and 3

(c) 2 and 3

(d) 1 and 2

Q. 77. Which one of the following statements is correct ?

(a) Reheat factor is zero if efficiency of the turbine is close to unity.

(b) Lower the efficiency, higher will be the reheat factor.

(c) Reheat factor is independent of steam conditions at turbine inlet.

(d) Availability of reheat is higher at low pressure end.

Q. 78. In a steam power plant, the ratio of the isentropic heat drop in the prime mover to the amount of heat supplied per unit mass of steam is known as

(a) stage efficiency

(b) degree of reaction (c) Rankine efficiency (d) relative efficiency

Ans. (c)

Q. 79. The critical pressure ratio for maximum discharge through a nozzle is given by

$$(a)\left(\frac{n+1}{2}\right)^{\frac{n}{n-1}} \qquad (b)\left(\frac{2}{n+1}\right)^{\frac{n}{n-1}} \qquad (c)\left(\frac{n+1}{2}\right)^{\frac{n-1}{n}} \qquad (d)\left(\frac{2}{n+1}\right)^{\frac{n-1}{n}}$$

$$(b)\left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$$

$$(c)\left(\frac{n+1}{2}\right)^{\frac{n-1}{n}}$$

$$(d)\left(\frac{2}{n+1}\right)^{\frac{n-1}{n}}$$

Ans. (b)

Q. 80	80. Consider the following statements: The volumetric efficiency of a reciprocating compressor can be enhanced by												
	1. heating the intake air	ency of a reciprocating											
	Which of these stateme		clearance volume 3.	cooling the intake air									
	(a) 1 alone	(b) 1 and 2	(c) 2 and 3	(4) 2 -1-									
Ans	• •	(b) I and 2	(c) 2 and 3	(d) 3 alone									
	. Reciprocating compre	score are provided wit	21.1.24										
Q. 01.	(a) simple disc/plate va												
	(c) spring-loaded disc v		(b) poppet valve(d) solenoid valve										
Ans			(a) solchold valve										
	2. Consider the following statements:												
• •	In centrifugal compressors, there is a tendency of increasing surge when												
	1. the number of diffuser vanes is less than the number of impeller vanes												
	2. the number of diffuser vanes is greater than the number of impeller vanes												
	3. the number of diffuser vanes is equal to the number of impeller vanes												
•	4. mass flow is greatly	in excess of that corresp	onding to the design mass	flow									
	Which of these stateme	nts is/are correct?											
A	(a) 1 and 4	(b) 2 alone	(c) 3 and 4	(d) 2 and 4									
Ans.	• •			•									
Ans.	(a) Incidence angle of t (b) δ is the deviation an (c) The deflection ϵ of t (d) ϵ is the sum of the a	he approaching air is more of the approaching air is more gle between the angle of the gas stream while pass	diagrams are constructed following statements in easured from the trailing ed incidence and tangent to using through the cascade is amber less any deviation are	this regard is correct? Alge of the blade the camber line. Is given by $\varepsilon = \alpha_1 - \alpha_2$									
		_											
Q. 84.	(a) work of compression	nple gas turbine can t n is reduced	be improved by using a real (b) heat required to be sup	egenerator, because the									
	(c) work output of the to	urbine is increased	(d) heat rejected is increase										
Ans.	(b)		() · · · · · · · · · · · · · · · · · ·										
Q. 85.	pump respectively : (1	Notations have their in	ae represents the specific sual meanings) $(c) \frac{NP^{1/2}}{H^{3/4}} \text{ and } \frac{NQ^{1/2}}{H^{5/4}}$										
Ans.	(d)		H	пп									
Q. 86.	Consider the following	turhines/wheels											
_	1. Francis turbine	, taromes, wheels .	2. Pelton wheel with two	ar more iste									
	3. Pelton wheel with a s	ingle iet	4. Kaplan turbine	of more jets									
	The correct sequence of	these turbines/wheels i	n increasing order of their	specific speeds is									
	(a) 2, 3, 1, 4	(b) 3, 2, 1, 4	(c) 2, 3, 4, 1	(d) 3, 2, 4, 1									
Ans.	(<i>b</i>)	,	(*) =, =, :, :	(4) 5, 2, 4, 1									
Q. 87.	The gross head availab	le to a hydraulic powe	r plant is 100 m. The util	ised head in the runner									
	friction head is estimate	ted to be	aulic efficiency of the tu	irdine is 90%, the pipe									
	(a) 20 m	(b) 18 m	(c) 16.2 m	(d) 1 8 m									
Ans.		(-) - · · · ·	(0) 10.2 III	(d) 1.8 m									

Q. 88. Match List I (Outlet vane angle β_2) with List II (Curves labelled 1, 2 and 3 in the given figure) for a pump and select the correct answer using the codes given below the Lists:

Codes:

List I

A. $\beta_2 < 90^{\circ}$ B. $\beta_2 = 90^{\circ}$

C. $\beta_2 > 90^{\circ}$

	Α	В	С		Α	В	C	laige
(a)	1	2	3	<i>(b)</i>	1	3	2	
(c)	2	1	3	(d)	3	2	1	

Ans. (a)

- Q. 89. Consider the following statements regarding the volute casing of a centrifugal pump:
 - 1. Loss of head due to change in velocity is eliminated.
 - 2. Efficiency of the pump is increased.
 - 3. Water from the periphery of the impeller is collected and transmitted to the delivery pipe at constant velocity.

Which of these statements are correct?

- (a) 1, 2 and 3
- (b) 1 and 2
- (c) 2 and 3
- (d) 1 and 3

Ans. (a)

Q. 90. The cavitation number of any fluid machinery is defined as $\sigma = \frac{p - p'}{\rho V^2/2}$ (p is absolute pressure,

 ρ is density and V is free stream velocity

The symbol p' denotes

- (a) static pressure of fluid
- (b) dynamic pressure of fluid
- (c) vapour pressure of fluid
- (d) shear stress of fluid

Ans. (c)

Q. 91. Consider the following statements:

A water turbine governor

- 1. helps in starting and shutting down the turbo unit
- 2. controls the speed of turbine set to match it with the hydroelectric system
- 3. sets the amount of load which a turbine unit has to carry

Which of these statements are correct?

- (a) 1, 2 and 3
- (b) 1 and 2
- (c) 2 and 3
- (d) 1 and 3

Ans. (c)

- Q. 92. Consider the following statements regarding a torque converter:
 - 1. Its maximum efficiency is less than that of the fluid coupling.
 - 2. It has two runners and a set of stationary vanes interposed between them.
 - 3. It has two runners.
 - 4. The ratio of secondary to primary torque is zero for the zero value of angular velocity of secondary. Which of these statements are correct?

- (a) 1 and 2
- (b) 3 and 4
- (c) 1 and 4
- (d) 2 and 4

Ans. (c)

(a) 600 W/m^2 (c) 1200 W/m^2

Ans. (c)

Q. 93.	Consider the following	statements:		
	The reheat cycle helps	to reduce		
	1. fuel consumption		2. steam flow	
	3. the condenser size			
	Which of these statemer	its are correct ?		
	(a) 1 and 2	(b) 1 and 3	(c) 2 and 3	. (d) 1, 2 and 3
Ans.	• •	(b) I and 3	(c) 2 and 3	(a) 1, 2 and 3
	The outer surface of a	long cylinder is main	tained at constant temper	ature. The cylinder does
	not have any heat sour			
	The temperature in the			
	(a) increase linearly with		(b) decrease linearly with	ı radius
	(c) be independent of rac	dius	(d) vary logarithmically v	with radius
Ans.	(c)			
Q. 95.	A composite plane wall thermal conductivities of	is made up of two d k_1 and k_2 respectively	ifferent materials of the sa. The equivalent thermal c	nme thickness and having onductivity of the slab is
	$(a) k_1 + k_2$	$(b) k_1 k_2$	$(c) \frac{k_1 + k_2}{k_1 k_2}$	$(d) \frac{2k_1 k_2}{k_1 + k_2}$
Ans.	(c)		' -·	1 2
	thermal conductivity of is $10 \text{ W/m}^2 - \text{K}$. If the current-carrying capaci (a) increase (c) remain the same	7 0.5 W/m - K. The of thickness of insulation ty of the wire will (b) decrease	ed with a sheathing of the utside surface convective in sheathing is raised by 10 g upon the electrical condi-	heat transfer coefficient 0 mm, then the electrical
Ans.	(c)			-
Q. 97. Ans.	(a) double of the origina (c) same as before	bled and the tube diam	transfer in a uniformly he eter is halved, the heat tra (b) half of the original va (d) four times of the original	nsfer coefficient will be lue
O. 98.	Heat transfer by radiation	On hetween two grey l	bodies of emissivity ϵ is p	proportional to (notation
•	have their usual meani	ngs)	bodies of emissivity E is p	roportional to (notations
		63)	$(F_{\cdot} - I)$	
	$(a)\frac{(E_b-J)}{(1-\varepsilon)}$		$(b) \frac{(E_b - J)}{(1 - \varepsilon)/\varepsilon}$	
	()		(- 0), 0	
	$(c)\frac{(E_b-J)}{(1-\epsilon)^2}$		$(d) \frac{(E_b - J)}{(1 - c^2)}$	
Ans.	(1 0)		$(i-\epsilon)$	
	` '	2		
Q. 99.	Solar radiation of 1200 0.5. If the surface tempof that surface will be	O W/m² falls perpend perature is 50° C and	dicularly on a grey opaquesurface emissive power	the surface of emissivity $600 \ W/m^2$, the radiosity

(b) 1000 W/m² (d) 1800 W/m²

Q. 10	The overall heat transfer coefficient U for a plane composite wall of n layers is given by (the
	thickness of the <i>i</i> th layer is t_i , thermal conductivity of the <i>i</i> th layer is k_i , convective heat
	transfer coefficient is h)

(a)
$$\frac{1}{\frac{1}{h_1} + \sum\limits_{i=1}^{n} \frac{t_i}{k_i} + \frac{1}{h_n}}$$
 (b) $h_1 + \sum\limits_{i=1}^{n} \frac{t_i}{k_i} + h_n$ (c) $\frac{1}{h_1 + \sum\limits_{i=1}^{n} \frac{t_i}{k_i} + h_n}$ (d) $\frac{1}{h_1} + \sum\limits_{i=1}^{n} \frac{t_i}{k_i} + \frac{1}{h_n}$

Ans. (a)

- Q. 101. The equation of effectiveness $\varepsilon = 1 e^{-NTU}$ of a heat exchanger is valid (NTU is number of transfer units) in the case of
 - (a) boiler and condenser for parallel flow (b) boiler and condenser for counterflow
 - (c) boiler and condenser for both parallel flow and counterflow
 - (d) gas turbine for both parallel flow and counterflow

Ans. (d)

Q. 102. Match List I with List II and select the correct answer using the codes given below the Lists (notations have their usual meanings):

		Lis	it I		List II	
A.	Fin				1. $\frac{UA}{C}$	
В.	Heat	exchar	nger		$ \begin{array}{ccc} C_{\min} \\ 2. & \frac{x}{\sqrt{x}} \end{array} $	
C.	Tran	sient co	onduction	on	$ \begin{array}{ccc} 2\sqrt{\alpha\tau} \\ 3. & \sqrt{\frac{hp}{kA}} \end{array} $	
D.	Heis	ler char	rt .		kA 4. hI/k	
Code	es:					
	Α	В	C	D	A B C D	
(a)	3	1	2	4	(b) 2 1 3 4	
(c)	3	4	2	1	(d) 2 4 3. 1	

Ans. (*a*)

- Q. 103. The Nusselt number is related to Reynolds number in laminar and turbulent flows respectively as (a) $Re^{-1/2}$ and $Re^{0.8}$ (b) $Re^{1/2}$ and $Re^{0.8}$ (c) $Re^{-1/2}$ and $Re^{-0.8}$ (d) $Re^{1/2}$ and $Re^{-0.8}$
- Q. 104. In respect of free convection over a vertical flat plate the Nusselt number varies with Grashof number 'Gr' as
 - (a) Gr and $Gr^{1/4}$ for laminar and turbulent flows respectively
 - (b) $Gr^{1/2}$ and $Gr^{1/3}$ for laminar and turbulent flows respectively
 - (c) $Gr^{1/4}$ and $Gr^{1/3}$ for laminar and turbulent flows respectively
 - (d) $Gr^{1/3}$ and $Gr^{1/4}$ for laminar and turbulent flows respectively

Ans. (a)

Q. 105. Consider the following conditions for heat transfer (thickness of thermal boundary layer is δ_1 , velocity of boundary layer is δ and Prandtl number is P_r):

1.
$$\delta_t(x) = \delta(x)$$
 if $P_r = 1$ 2. $\delta_t(x) >> \delta(x)$ if $P_r << 1$ 3. $\delta_t(x) << \delta(x)$ if $P_r >> 1$

Which of these conditions apply for convective heat transfer?

- (a) 1 and 2
- (b) 2 and 3
- (c) 1 and 3
- (d) 1, 2 and 3

Ans. (d)

1. lower in residential buildings as compared to those of public buildings 2. higher in residential buildings as compared to those of public buildings

		4. equal in all types of the Which of these stateme	ouildings	o those of public buildings	
	Ans.	(a) 1 alone	(b) 1 and 3	(c) 2 and 3	(d) 4 alone
Q.		When warm saturated (a) excess moisture con (b) excess moisture con (c) excess moisture co unchanged. (d) specific humidity in	denses denses but relative hun ndenses and specific	nidity remains unchanged humidity increases but re midity decreases	elative humidity remains
	115. Ans.	When dry-bulb and we (a) air is fully saturated (b) air is fully saturated (c) dew-point temperatu (d) partial pressure of we (b)	and dew-point temperate has reached and hur ater vapour is equal to	nidity is 100%	at the
Q.	116. Ans.	(a) 1 and 2	;	2. Humidity ratio 4. Solar radiation intensit account for determining e (c) 2, 3 and 4	
Q.	117.	The desirable air velocithe range of (a) 6 - 7 m/minute	city in the occupied z_0 (b) 4 - 5 m/minute	one for comfort for summ $(c) 2 - 3 \text{ m/minute}$	
•		Consider the following 1. The recommended outs 2. Outside air for ventila 3. The sensible heat fact Which of these statement (a) 1 and 2	side air required per perso tion purposes causes so or for an auditorium is	on for an auditorium is approensible heat load and also legenerally kept as 0.7.	ximately 0.25 m ³ /min. atent heat load. (d) 1, 2 and 3
		room and ambient air is (a) 60 kJ/hr	g/m^3 , specific heat C_p	as infiltration of air equi is 1 kJ/kg-K and tempera heat load due to infiltrat (c) 6 kW	ture difference between
Q.	120.	If heat and mass transithe mass transfer coeff (a) Schmidt and Reynold (c) Nusselt and Lewis nu	icient is a function of is numbers	neously, the ratio of hear f the ratio of (b) Schmidt and Prandtl n (d) Reynolds and Lewis n	umbers

I.E.S. (Objective)

MECHANICAL ENGINEERING-2000

PAPER - II

tool interface will be

In electrochemical grinding,

4. metal removal takes place due to electrolysis.

(b) 2

(a) $\frac{1}{2}$

Ans. (a)

Q. 1. In an orthogonal cutting test, the cutting force and thrust force were observed to be 1000N and 500 N respectively. If the rake angle of tool is zero, the coefficient of friction in chip-

 $(c)\frac{1}{\sqrt{2}}$

 $(d, \sqrt{2})$

-		_			~ .	l for maximum prof					
			•			m cost and maximum m production rate	i produc	uon rau	Е		
		low the s									
		qual to the									
Ans. (-	1	горосс								
(d (l	a) bo b) al	ond type, prasive type	structur pe, grai	e, gra n size	de, grain grade, s	14 S" on a grindin size and abrasive type ructure and bond type	e e	l repres	sents re	spectively	y
•		• • •	-			size and abrasive type ain size and bond type					
Ans. (nasive ty	pe, suu	ciule,	grade, gr	an size and bond type	Е				
,	-	taal life	4 m m 4 m d	L 1:	- 		46- 4	.1 1:6- 4	- 1/04	C 41	
		Taylor's				tting speed reduces	the too	oi iiie t	o 1/8tn	or the o	riginal.
(4	$a)\frac{1}{2}$			(<i>b</i>)	$\frac{1}{3}$	$(c)\frac{1}{4}$			$(a'), \frac{1}{8}$		
Ans. (b)							-	_		
		h List I (List II (Working prists :	rinciples	s) and s	elect th	e correct	answer
		List I					List II				
1	٩.	Die casti	ng		1. N	olten metal is forced	into the	die und	ler press	sure	
]	3.	Centrifug	•	ing		kis of rotation does no			-		
(3 .	Centrifug	_			etal solidifies when r					
) .	Continuo		ing		ontinuously pouring r		_	-	1	
Codes	:			6		, paring .				-	
		Α	В	C	D		Α	B	С	D	
	(a)	1	3	2	4	(b)	4	3	2	1	
	(c)	1	2	C 2 3	4	(d)	4	B 3 2	3	1	
Q. 6. C	ons	ider the f	followi	ng sta	tements	:					

1. a rubber bonded alumina grinding wheel acts as the cathode and the workpiece as the anode.

2. a copper bonded alumina grinding wheel acts as the cathode and the workpiece as the anode.

3. metal removal takes place due to the pressure applied by the grinding wheel.

Ans	Whi (a) 1 i. (b)	ch of the and 3	ese stat		are correct?		(c) 2 a	nd 3		(d)	1 and 3		
Q. 7	(a) r (b) ii (c) p (d) ii	educing t icreasing roviding	ne roll of the roll back-up	diamete diame orolls	separating for er ter tween the rolls				by				
Q. 8.	. Cons	ider the	follow	ing stat	tements :								
	In forward extrusion process 1. the ram and the extruded product travel in the same direction. 2. the ram and the extruded product travel in the opposite direction. 3. the speed of travel of the extruded product is same as that of the ram. 4. the speed of travel of the extruded product is greater than that of the ram. Which of these statements are correct? (a) 1 and 3 (b) 2 and 3 (c) 1 and 4 (d) 2 and 4												
Ans.		unu 5		(0)	2 and 3		(c) 1 ar	id 4		(d) 2	and 4		
	(4) 5	h one of odium ste	the fo	llowing	g lubricants is Water	most	suitable	for dr	rawing		eel wires Kerosene	: ?	
Ans.		h4			g statements is								
	(b) Bo (c) La (d) Ao (a) Best (a) to (c) 20	orax is the ser beam C can be position produced to the position produced to the series of the series	e comn weldir used fo of cran	only using emplor GTA'	Iding of mild stated flux coating loys a vacuum of the process blanking operated dead centre	on we hamb	er and tl	hus avo hanical rees bel	press	is		∍thod	
Ans.		•											
Q. 12.	the co	n List I odes give	(Proces on belo	s) with w the l	n List II (Prod Lists :	ucts/n	naterials) and s	select tl	ne corre	ect answ	er using	
			List I					List	II				
	A.	Die cas	-			1.			ldehyde	;			
	В. С.	Shell m	_			2.	C.I. pi	-					
	D.	Centrifu	_	tina		3. 4		errous a					
	Codes		igai cas	ung		4.	Sodiui	m silica	te				
		Α	В	С	D				n	0	_		
	(a)	1	3	4	2		(b)	A 3	B 1	C 4	D 2		
	(c)	3	1	2	4		(d)	1	3	2	4		
Ans.	(b)						` ,			-	•		

m (d (l	naking laboring by Boring by BTA constant consta	arge di g tool tools (I Irill and	ameter Boring a boring	holes nd trep tool	? panning as			ols and pr		s are n	ormally	employe	ed for	
Q.14. V		gear to			processe		of gear manufacture results in best accuracy of the (b) Hobbing							
(c) Rotar	_	shaper				(d) Rack type gear shaper							
Ans. (-	ha ind	av mlata	vd ≫efo	milling	machin	a d	ividing he	ad has	the fo	llowing	hole cir	reles ·	
Q. 15. (one or t	ne mo	ex plate		16; 17;				zau mas	, the re	,110 W 111 E	, note en	0103 .	
Ans. (Q. 16. \(Ans. \)	he inde a) 17 ho c) 1 rev c) Which co f heade (a) G7 h (c)	x cranloles in toolution one of ed jig	c has to he 20-h and 3 h the foll- bush for	o be recole circoles in owing repress (b) I	tated throcele 17-hole c tolerance fit is con	ough circle es set or crect ?	(<i>b</i>) (<i>d</i>) n ii	18 holes 18 holes 1 revolut nner diam (c) H 7 h	in the 2 ion and eter ar	20-hole I 2 hole and outer	circle s in 18- r diame (d) F7	hole circleter respe	e ctively	
-		-	-					the List			, , , , , ,	,		
		L	ist I					i	List II					
	B. Bl	ase with lade rmature rmature	coil wi	re		2	2. 3.	Stamping Wire dra Turning Casting		ressing				
	Codes :													
		A	В	C	D			415	A	В	C	D		
	(a) (c)	4	3	2	1			(b) (d)	2 4	1 1	4 2	3		
Ans.	(d)													
	(a) cutt (c) tool	ing flui	d canno	t pene	distance f rate that re at that reg	egion	(l	ool tip be b) stress or d) tool tem	rake t					
Q. 19.	Consid 1. HSS	er the	followii		l material Cemented			3. Ceram	nics		4. Di	amond		
Ans.	(a) 4, 3		equence		ese mater 4, 3, 2, 1	ials in	de	creasing ((c) 3, 4,		f their		speed is 4, 1, 2		

2. Thermit welding

Q. 20. Consider the following processes:

1. Gas welding

		as welding			2. Thermit welding				velding		4. Resistance welding		
Ans.	The correct sequence (a) 1, 3, 4, 2 ns. (b)			of the (b) 1	of these processes in ine (b) 1, 2, 3, 4			reasing (c) 4, 3,	order o	of their	welding temperatures is (d) 4, 1, 3, 2		
		ch List I w	ith List	II and	select	the correct	ans	swer usii	ng the o	codes g	iven hel	ow the I	ists ·
		List [the correct answer using the codes given below the Lists:						
	(a)						l. Lathe						
	(b)						2.	Milling machine					
	(c)	(c) Indexing mechanism					3.	Shaper					
	(d) Regulating wheel					4	١.	Centreless grinding					
	Code	es:											
		Α	В	C	D				Α	В	С	D	
	(a)	3	2	1	4			<i>(b)</i>	2	3	4	1	
	(c)	4	2	3	1			(d)	.3	1	2	4	
Ans.		sider the fo											
Ans. Q. 23.	 2. It can be used for drilling holes at a 3. It can be used for V butt joint weld 4. The memory capacity required for Which of these are the characteristics (a) 1 and 2 (b) 1, 3 and s. (c) 3. Match List I (Components used in the correct answer using the codes 				its control unit is low. associated with a point to point robo (c) 1, 2 and 4				(d) 2, 3 and 4				
		List I				List II							
	A. B.	1.				To guide the drill bit during machining							
	ъ.	V-locator			2.	For easy removal of the workpiece from the jig or fixture after the machining operation is over							
	C.	Bushes			3.	To locate the circular or semicircular objects in a jig or fixture							
	D.	Ejectors			4.	To locate workpieces whose dimensions are subject to variations							
. (Code	s :											
		Α	В	C	D				Α	В	C	D	
	(a)	3	4	1	2			<i>(b)</i>	3	4	2	1	
Ans. ((c) (c)	4	3	1	2			(d)	4	3	2	1	
								÷					

Q. 24. Match List I (Scientist) with List H (Research work) and select the correct answer using the codes given below the Lists:

	COUC	s given ee	10 11 11	C Dists .						
	List I						List II			
	A.	Schewart			1.	Less	function	in quality	/	
	В.	Taguchi			2.	Queu	ing mode	el		
	C.	Erlang			3.	Zero	defect			
		•			4.	Cont	rol charts	i		
	Code	es :								
		Α	В	С			Α	В	С	
	(a)	3 4	1			(b)	A 4 3	3	1	
	(c)	4	1	2 2		(d)	3	4	1	
Ans.	(b)									
	nece (a) 6	y showed to ssary for 9	hat per	nterested to kn reentage of idle vel of confider (b) 1600	time wo	uld be 2	0%. The curacy is			
Ans. Q. 26.	Whi	ch one of		llowing is NO' (b) Stop-wat				actor	(d) MTM	
Q. 27.	Rowan incentive plan is given by $(R = \text{Hourly rate}, T_a = \text{Actual time taken for job}, T_s = \text{Standard time for job and } E = \text{Earnings})$ $E = R \times T_a + \frac{(T_s - T_a)}{T_s} \times T_a \times R$									
Ans	(a) s	shape of th traight line		es between bon (b) parabola		-	entage tir orizontal		is a (d) vertical	line
	Last	volume, th	ne fixe	cturer produce d costs were R of product wo	ks. 15.2 la	cs and t	otal varia		s were Rs. 2	
	(a)	1000		(b) 7800		(c) 84	400		(d) 9500	
Ans	\cdot (d)									
Q. 29	1. 0 2. 7	Qualitative quantitative The three o	factor value determ	ng statements analysis is a rest to the decision	method of ion criteri	evaluat a.	ing a pot	tential-lo	cation witho	
	volume of production.									
	3. An appliance manufacturing plant where products are made on assembly lines would be classified as job shop type of layout. Which of these statements is/are correct?									
		1, 2, and 3				(c) 2	alone		(d) 3 alone	
Ans	• •			(b) I and 2						
				(b) 1 and 2		(0) 2				
0 30		ting in pro	ductic		d control	, ,				
Q. 30	. Rou			on planning an	d control	refers to	the	of work		
Q. 30	. Rou (a) l		f load	on planning an	d control	refers to	the orisation		to be perform	ned

Q. 31. Match List I with List II and	select the correct	answer using the	codes given	below the	Lists :

				List	I		List II					
	Α.	Control	charts fo	or varia	bles		1	Bino	mial dis	tributio	n	
	В.	Control	chart fo	r numb	er of non-confo	rmities	2.		distribu			
	C.	Control	chart fo	r fractio	on rejected		3.	Norn	nal distr	ibution		
	D.	Activity	time dis	stributio	on in PERT		4.	Poiss	on distr	ibution		
							5.	Ехро	nential	distribu	tion	
Cod	es:							•				
		Α	В	C	D				_	_		
	(a)	3	ь 4	C 1	D 5		(1)	A	В	C	D	
	(c)	4	3	1	2		(b)	5	4	3	1	
A ma		,	,	1	2	,	(d)	3	4	1	2	
	(d)				statements is							
Ans. Q. 33.	(c) Ir or (d) Ir (d) Ir (d) Cons 1. A gr 2. Fo ca 3. In ar fr Whice (a) 1,	itranspor r a dumm ilinear pro- ider the f linear pro- raphical nor solution an be emp to the solu- tificial value om all su	tation pay column ogramm collowing nethod. ons of a ployed. tion propriable bseques	oroblem nn ning pro ng state ning pro n linear occess of leaves nt table nents an	r programming of a linear program the basis, the	are matri a dual is ree varia probler grammin column	ix is r a prim bles a n with	nade so nal and two n mixe blem u e artifi	constinct cons	y addin raints c traints,	an be sol Big-M-n ethod, w can be re	ved by nethod,
Q. 34. Ans.	expor will h	en one a nentially v nave to w	rrival a with a r ait, is	and the	are considered next. The ler of 3 minutes. T	igth of a	n phor ability	ne call	is assu	imed to	be disting at the	ributed
Q. 35.	Dumr	ny activit	ies are	used i	n a network to)						
	(a) fa	cilitate co	mputati	on of sl	acks		isfy pı	eceden	ce requ	irement	:s	
		termine pi	roject co	ompleti	on time			of res	-			
Ans.												
Q. 36. Ans.	(a) 18	earliest suration tires weeks	starting ne of t	he acti	or an activity vity is 11 weeks	ks, then	ks, th the to 56 wes	tal flo	t finish at is eq	time is ual to (d) 40		ks and

Q. 37. Consider the following flow chart:

The printed value X, Y and Z by the computer will be

(a) the highest

List I

(b) the middle

(c) the lowest

List II

(d) none of the above

Ans. (a)

Q. 38. Match List I with List II and select the correct answer using the codes given below the Lists:

A. RAM B. ROM C. DOS D. LAN						Network of computers Software which makes the computer work Memory used for processing Memory in which user cannot write anything						
Codes:			~									
	Α	В	C	D		·	Α	В	С	D		
(a)	1	2	3	4		(b)	3	4	2	1		
(c)	2	3	4	1		(d)	3	4	1	2		
Ans. (b)												

Q. 39. A production system has a product type of layout in which there are four machines laid in series. Each machine does a separate operation. Every product needs all the four operations to be carried out. The designed capacity of each of the four machines is 200, 175, 160 and 210 products per day. The system capacity would be

(a) 210 products per day

(b) 200 products per day

(c) 175 products per day

(d) 160 products per day

Ans. (d)

Q. 40. Match List I (End conditions of columns) with List II (Equivalent length in terms of length of hinged-hinged column) and select the correct answer using the codes given below the Lists:

	List I		List II
A.	Both ends hinged	1.	L
В.	One end fixed and other end free	2.	$\sqrt{2}$ L
C	One end fixed and the other pin-jointed	3.	L/2
D.	Both ends fixed	4.	2 L

Codes:

	Α	В	C	D		Α	В	C	D
(a)	1	3	4	2	(<i>b</i>)			2	
(c)	3	1	2	4				4	
Ans. (b)					. ,				

Q. 41. Match List I with List II and select the correct answer using the codes given below the Lists:

List 1

- A. Bending moment is constant
- B. Bending moment is maximum or minimum
- C. Bending moment is zero
- D. Loading is constant

List II

- Point of contraflexure
- 2. Shear force changes sign
- Slope of shear force diagram is zero over the portion of the beam
- 4. Shear force is zero over the portion of the beam

Codes:

	Α	В	C	D
(a)	4	1	2	3
(c)	4	2	1	3

A B C D (b) 3 2 1 4 (d) 3 1 2 4

Ans. (b)

Q. 42.

A loaded beam is shown in the above figure. The bending moment diagram of the beam is best represented as

(d)

Ans. (c)

- Q. 43. At a certain section at a distance 'x' from one of the supports of a simply supported beam, the intensity of loading, bending moment and shear force are W_x , M_x , and V_x respectively. If the intensity of loading is varying continuously along the length of the beam, then the *invalid* relation is
 - (a) Slope $Q_x = \frac{M_x}{V_x}$

(b) $V_x = \frac{dM_x}{dx}$

 $(c) W_x = \frac{d^2 M_x}{dx^2}$

(d) $W_x = \frac{dV_x}{dx}$

Ans. (d)

 $(a)\frac{1}{5}$

Ans. (c)

Ų. 44	normal siress at a poi	nt in a body is defin	ned by principal stress	ses 3σ and σ. The ratio of the naximum shear stress is
	(a) 1	(b) 2	(c) 3	(d) 4
Ans	. (b)	, ,	. (-/-	(4)
Q. 45	. Which one of the fo	llowing Mohr's circle	es represents the state	of pure shear ?
	(a)	<u> </u>	(b) σ ←	0
	(c) o	σ	(<i>d</i>)	т т
Ans	. (c)			
Q. 46.	. The state of plane str	ress in a plate of 100	mm thickness is giv	en as
	$\sigma_{xx} = 100 \text{ N/mm}^2 \cdot \sigma_{yy}$	$y = 200 \text{ N/mm}^2$, Youn	ig's modulus = 300 N/	mm^2 , Poisson's ratio = 0.3
	The stress developed i (a) zero			
Ans.		$(b) 90 \text{ N/mm}^2$	(c) 100 N/mm^2	(<i>d</i>) 200N/mm^2
	Consider the following	ag toole		
Ans.	1. High carbon steel to 3. Ceramic tools Which of these tools a (a) 1 and 2	ools	2. High speed steel 4. Carbide tools tive rake angle? (c) 1 and 3	(d) 3 and 4
	* *	L E 200 103 x m	1 10-3	
ų. 40.	It is uniformly heated the rod is	I such that the increa	and $\alpha = 10^{\circ}$ mm/minuse in temperature is 1	m°C is fixed at both the ends. 30°C. The stress developed in
	(a) 6000 N/mm^2 (tens	ile)	(b) 6000 N/mm ² (c	compressive)
	(c) 2000 N/mm^2 (tens	ile)	$(d) 2000 \text{ N/mm}^2 (c)$	•
Ans.				•
Q. 49.	A circular solid shaft	is subjected to a ber	nding moment of 400	kN.m and a twisting moment

of 300 kN.m On the basis of the maximum principal stress theory, the direct stress is σ and

according to the maximum shear stress theory, the shear stress is τ . The ratio σ/τ is

O. 50.

The two cantilevers A and B shown in the above figure have the same uniform cross-section and the same material. Free end deflection of cantilever 'A' is δ . The value of mid-span deflection of the cantilever 'B' is

- $(a)\frac{1}{2}\delta$
- $(b)\frac{2}{3}\delta$
- (c) δ
- $(d) 2\delta$

Ans. (d)

- Q. 51. A link is under a pull which lies on one of the faces as shown in the above figure. The magnitude of maximum compressive stress in the link would be
 - (a) 21.3 N/mm^2
- (b) 16.0 N/mm^2
- (c) 10.7 N/mm^2
- (d) zero

Ans. (d)

- Q. 52. Two coiled springs, each having stiffness K, are placed in parallel. The stiffness of the combination will be
 - (a) 4 K
- (b) 2 K
- $(c)\frac{K}{2}$
- $(d)\frac{K}{4}$

Ans. (b)

- Q. 53. A long slender bar having uniform rectangular cross-section ' $B \times H$ ' is acted upon by an axial compressive force. The sides B and H are parallel to x- and y-axes respectively. The ends of the bar are fixed such that they behave as pin-jointed when the bar buckles in a plane normal to x-axis, and they behave as built-in when the bar buckles in a plane normal to y-axis. If load capacity in either mode of buckling is same, then the value of H/B will be
 - (a) 2
- (b) 4
- (c) 8
- (d) 16

Ans. (a)

- Q. 54. The property by which an amount of energy is absorbed by a material without plastic deformation, is called
 - (a) toughness
- (b) impact strength
- (c) ductility
- (d) resilience

Ans. (d)

- Q. 55. When a weight of 100 N falls on a spring of stiffness 1 kN/m from a height of 2 m, the deflection caused in the first fall is
 - (a) equal to 0.1 m

(b) between 0.1 and 0.2 m

(c) equal to 0.2 m

(d) more than 0.2 m

Ans. (b)

- Q. 56. Which one of the following features improves the fatigue strength of a metallic material?
 - (a) Increasing the temperature
- (b) Scratching the surface

(c) Overstressing

(d) Understressing

Ans. (d)

- Q. 57. Cermets are
 - (a) metals for high temperature use with ceramic like properties
 - (b) ceramics with metallic strength and lustre
 - (c) coated tool materials

(d) metal-ceramic composites

Ans. (c)

1214			OBJECTIVE TY	PE QUESTIONS AND ANSWERS
Q. 58.	Percentage of various 1. 18% W; 4% Cr; 1% 3. 27% Cr; 3% Ni; 5% Which of these relate (a) 1 and 3	V; 5% Co; 0.7% C Mo; 0.25% C	sent in different steel mater 2. 8% Mo; 4% Cr; 2% 4. 18% Cr; 8% Ni; 0.1 steel ? (c) 2 and 3	V; 6% W; 0.7% C
Ans.	(b)			•
Q. 59.	A thin cylinder contains 0.6 m and the tense have a minimum walt (a) 9 mm	sile stress in the mat	erial is to be limited to 9	ernal diameter of the shell 0000 N/m^2 . The shell must $(d) 21 \text{ mm}$
Ans.		(0) 11	(6) 17	() 21
Q. 60.	safety of 2 and apply the steel shaft subject	ving maximum prince ted to torque will be	ipal stress theory of failure	N/mm ² . Using a factoy of re, the permissible stress in
Ans.	` '	(b) 57.7 N/mm^2	(c) 86.6. N/mm ²	(<i>d</i>) 100 N/mm^2
	Which one of the fo (a) Yield strength	llowing properties is (b) Proportional li	s more sensitive to increa mit (c) Elastic limit	se in strain rate? (d) Tensile strength
	Pearlite consists of (a) 6.67% C and 93.3 (c) 13% C and 87% fe		(b) 13% Fe and 87% of (d) 13% cementite and	
Ans	. (d)			
	 Addition of vanadium (a) heat-treatability by (c) fatigue strength (b) 		(b) hardenability	ation at elevated temperature
_	Atomic packing fact (a) 0.52	or (APF) in the case (b) 0.68	e of copper crystal is (c) 0.74	(d) 1.633
	(a)During peritectic sol(a) combines with one	-		•
	(b) solidifies into two(c) forms one solid(d) forms one solid ar			
	. (b)			
Q. 66	 Consider the following 1. Rapid process No work holding d Which of these are th 	evice is required.	2. Work with keyway	s can be ground
Ans	(a) 1, 2 ans 3	(b) 1 and 2	(c) 2 and 3	(d) 1 and 3

Direction: The following 19 (ninteen) items consist of two statements, one labelled the 'Assertion (A)' and the other labelled the 'Reason (R)'. You are to examine these two statements, and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your Answer Sheet accordingly.

Codes:

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q. 67. Assertion (A): Poisson's ratio of a material is a measure of change in dimension in one direction due to loading in the perpendicular direction.

 Reason (R): The nature of lateral strain in a uniquially leaded members in the strain in a uniquially leaded members in the strain in a uniquially leaded members.

Reason (R): The nature of lateral strain in a uniaxially loaded member is opposite to that of linear strain.

Ans. (a)

Q. 68. Assertion (A): Addition polymerization is a primary summation of individual molecules into long chains.

Reason (R): In addition polymerization, the reaction produces a small molecule as by-product. **ns.** (c)

Q. 69. Assertion (A): Normalised steel will have lower hardness than annealed steel.

Reason (R): The pearlite of normalised steel is finer and has lower intermolecular space.

Ans. (a

Q. 70. When a composite unit consisting of a steel rod surrounded by a cast iron tube is subjected to an axial load.

Assertion (A): The ratio of normal stresses induced in both the materials is equal to the ratio of Young's moduli of respective materials.

Reason (R): The composite unit of these two materials is firmly fastened together at the ends to ensure equal deformation in both the materials.

Ans. (a)

Q. 71. Assertion (A): Cam of a specified contour is preferred to a cam with a specified follower motion.

Reason (R): Cam of a specified contour has superior performance.

Ans. (d)

Q. 72. Assertion (A): In designing the size of the flywheel, the weight of the arms and the boss are neglected.

Reason (R): The flywheel absorbs energy during those periods when the turning moment is greater than the resisting moment.

Ans. (b)

Q. 73. Assertion (A): For a radial engine containing four or more cylinders, the secondary forces are in complete balance.

Reason (R): The secondary direct and reverse cranks form a balanced system in the radial engines.

Ans. (a)

Q. 74. Assertion (A): In pre-loaded bolted joints, there is a tendency for failure to occur in the gross plate section rather than through holes.

Reason (R): The effect of pre-loading is to create sufficient friction between the assembled parts so that no slippage occurs.

Ans. (a)

Q. 75. Assertion (A): Helical gears are used for transmitting motion and power between intersecting shafts, whereas straight bevel gears are used for transmitting motion and power between two shafts intersecting each other at 90°.

Reason (R): In helical gears teeth are inclined to axis of the shaft and are in the form of a helix. whereas in bevel gears, teeth are tapered both in thickness and height form one end to the other.

Ans. (b)

Q. 76. Assertion (A): To obtain large deformations by cold working intermediate annealing is not

Reason (R): Cold working is performed below the recrystallisation temperature of the work material. Ans. (d)

Q. 77. Assertion (A): Oil as a cutting fluid results in a lower coefficient of friction.

Reason (R): Oil forms a thin liquid film between the tool face and chip, and it provides 'hydrodynamic lubrication'.

Ans. (*a*)

Q. 78. Assertion (A): In metal cutting, the normal laws of sliding friction are not applicable. Reason (R): Very high temperature is produced at the tool-chip interface.

Ans. (b)

Q. 79. Assertion (A): The ratio of cutting force to thrust force is very high in grinding process as compared to other machining processes.

Reason (R): Random orientation and effective negative rake angles of abrasive grains increase the cutting force and adversely affect the cutting action and promote rubbing action.

Ans. (a)

Q. 80. Assertion (A): The axis of an NC drilling machine spindle is denoted as z-axis. Reason (R): In NC machine tool, the axis perpendicular to both x- and y-axes is designated as z-axis.

Ans. (a)

Q. 81. Assertion (A): Double sampling is preferred over single sampling when the quality of incoming lots is expected to be either very good or very bad. Reason (R): With double sampling, the amount of inspection required will be lesser than that in the case of single sampling.

Ans. (a)

Q. 82. Assertion (A): Vogel's approximation method yields the best initial basic feasible solution of a transportation problem.

Reason (R): Vogel's method gives allocations to the lowest cost elements of the whole matrix.

Q. 83. Assertion (A): Master production schedule drives the whole of production and inventory control system in a manufacturing organisation.

Reason (R): Master production schedule is a list of daily and weekly work released by PPC to production.

Ans. (c)

Q. 84. Assertion (A): The direction of Coriolis acceleration shown in the given figure is correct. Reason (R): The direction of Coriolis acceleration is such that it will rotate at a velocity ν about its origin in the direction opposite to ω .

Q. 85. Assertion (A): While plotting control charts for variables, average of sub-groups of readings are used rather than the individual readings.

Reason (R): If control charts are plotted with the individual readings, the labour of plotting the chart will increase.

Ans. (c)

Q. 86. Euler's formula can be used for obtaining crippling load for a M.S. column with hinged ends. Which one of the following conditions for the slenderness ratio $\frac{l}{\kappa}$ is to be satisfied?

(b)
$$9 < \frac{l}{k} < 18$$

(b)
$$9 < \frac{l}{k} < 18$$
 (c) $19 < \frac{l}{k} < 40$

$$(d)\,\frac{l}{k} \ge 80$$

Ans. (c)

Q. 87. The kinematic chain shown in the above figure is a

- (a) structure
- (b) mechanism with one degree of freedom
- (c) mechanism with two degree of freedom
- (d) mechanism with more than two degrees of freedom

Ans. (d)

Q. 88. A point on a link connecting a double slider crank chain will trace a (a) straight line

(c) parabola

(d) ellipse

Ans. (b)

- Q. 89. A wheel is rolling on a straight level track with a uniform velocity 'v'. The instantaneous velocity of a point on the wheel lying at the mid-point of a radius (a) varies between 3 v/2 and -v/2
- (b) varies between v/2 and -v/2*
- (c) varies between 3 v/2 and -v/2
- (d) does not vary and is equal to v

Ans. (b)

- Q. 90. A four-bar chain has
 - (a) all turning pairs
 - (b) one turning pair and the others are sliding pairs
 - (c) one sliding pair and the others are turning pairs
 - (d) all sliding pairs

Ans. (a)

- Q. 91. Which one of the following pair is correctly matched?
 - (a) Beauchamp tower

...... First experiments on journal bearings

(b) Osborne Reynolds

..... Antifriction bearings

(c) Somonerfeld number

...... Pivot and Coller bearings Hydrodynamic lubrication

(d) Ball bearings

Ans. (c)

- Q. 92. Sensitiveness of a governor is defined as
 - (a) $\frac{\text{Range of speed}}{2 \times \text{Mean speed}}$

- $2 \times Mean speed$ Range of speed
- (c) Mean speed \times Range of speed
- $(d) \frac{\text{Range of speed}}{}$

9Kg (∙

50 cm

Ans. (d)

- Q. 93. Masses B_1 , B_2 and 9 kg are attached to a shaft in parallel planes as shown in the above figure. If the shaft is rotating at 100 rpm, the mass B_2 is
 - (a) 3 kg
- (c) 9 kg
- (b) 6 kg (d) 27 kg

Ans. (a)

Q. 94. The equation of motion for a damped viscous vibration is 3x + 9x + 27x = 0.

The damping factor is

(b) 0.50

(c) 0.75

(d) 1.00

(a) 0.25Ans. (b)

- Q. 95. A mass is suspended at the bottom of two springs in series having stiffness 10 N/mm and 5 N/mm. The equivalent spring stiffness of the two springs is nearly
 - (a) 0.3 N/mm
- (b) 3.3 N/mm
- (c) 5 N/mm
- (d) 15 N/mm

Shaft

50 cm

Ans. (b)

- Q. 96. The velocity ratio in the case of the compound train of wheels is equal to
 - (a) $\frac{\text{No. of teeth on first driver}}{\text{No. of teeth on last follower}}$
- (b) $\frac{\text{No. of teeth on last follower}}{\text{No. of teeth on first driver}}$
- Product of teeth on the drivers
- Product of teeth on the followers
- Product of teeth on the drivers

Ans. (c)

- Q. 97. A loaded semi-infinite flat plate is having an elliptical hole $(A/B \neq 2)$ in the middle as shown in the above figure. The stress concentration factor at points either X or Y is
 - (a) 1
- (b) 3
- (c) 5

Ans. (c)

- Q. 98. For the bracket bolted as shown in the above figure, the bolts will develop
 - (a) primary tensile stresses and secondary shear stresses
 - (b) primary shear stresses and secondary shear stresses
 - (c) primary shear stresses and secondary tensile stresses
 - (d) primary tensile stresses and secondary compressive stresses

Ans. (a)

- Q. 99. A screw thread specified by M 20×2.5 C as per BIS thread system means
 - (a) Metric thread of 20 mm nominal diameter and 2.5 mm pitch having coarse tolerance
 - (b) Metric thread of 20 mm root diameter and 2.5 mm pitch having coarse tolerance

	,	(c) Metric thread of fine	class having 20 mm root	diameter a	and 2.5 mm pitc	h
			mm shank diameter and 2	.5 mm thre	ad depth with c	oarse tolerance
	Ans.	(d)			///////	
Q.	100.	The key shown in the				///////////////////////////////////////
		(a) Barth key	(b) Kennedy key			///////////////////////////////////////
		(c) Lewis key	(d) Woodruff key			Key
	Ans.					
Q.	101.	Which one of the followarives is NOT correct		gard to belt		
		(b) Maximum power is to(c) Wide and thin belt is(d) Crown is provided o	of wrap of the belt enable ransmitted when the centri preferable for better life in the pulley to make the	fugal tensio than a thicl	n is three times to and narrow or	the tight side tension ne
	Ans.	(b)				
Q.	102.	Angle of twist of a sh	aft of diameter 'd' is in	versely pro	oportional to	
		(a) d	$(b) d^2$	$(c) d^3$		$(d) d^4$
	Ans.	(d)				The second second
Q.	103.	-	earing? gmetal temperature and b il pressure and speed of sl grature and oil pressure	earing vibr		for determining safe
	Ans.	(a)				
Q.	104.	Consider the following 1. Pair of gear in mesh. Among these, the higher (a) 1 and 4	2. Belt and pulley.	 Cylinde (c) 1, 2 ar 	er and piston.	4. Cam and follower. (d) 1, 2 and 4
Λ	105	• •	` '			• •
	Ans.	(a) Coriolis and radial a(c) Coriolis and gyrosco	rmly rotating cylinder r cceleration	nechanism (b) Radial	? I and tangential	•
Q.	106.	Consider the following	statements :			
_			hole forms a turning pair			
			are hole forms a sliding p			
			oot-step bearing forms a s	uccessful c	onstraint.	
		Which of these statemer		() 3 1 1	a :	
1)	Ans.	(a) 1 and 3	(b) 1 and 2	(c) 2 and 3	3	(d) 1, 2 and 3
			mains of tumos of hospital		mliantiana .	
Ų.	107.	Consider the following 1. Partial Journal bearing			optications: ail wagon axles	
		2. Full journal bearing	5		iesel engine cra	
		3. Radial bearing			ombined radial	
		Which of these pairs is/a	are correctly matched?			
		(a) I alone	(b) 1 and 2	(c) 2 and 3	3	(d) 1, 2 and 3
	Ans.	(b)				• ·

1. It is four stroke IC engine

2. The compression stroke is 0° to 180°

3. Mean turning moment
$$T_m = \frac{580}{\pi} N \cdot m$$

4. It is a multi-cylinder engine.

Which of these statements are correct?

(a) 1, 2 and 3

(b) 1, 2 and 4

(c) 2, 3 and 4

(d) 1, 3 and 4

Ans. (a)

- Q. 109. The pitching of a ship in the ocean is an oscillatory periodic motion. A ship is pitching 6° above and 6° below with a period of 20s from its horizontal plane. Consider the following statements in this regard:
 - 1. The motion has a frequency of oscillation (i.e. pitching) of 3 cycles/minute.
 - 2. The motion has an angular frequency of 3.14 rad/s.
 - 3. The angular velocity of precession of ship's rotor is $\pi^2/300$ rad/s.
 - 4. The amplitude of pitching is $\pi/30$ rad.

Which of these statements are correct?

(a) 1 and 2

(b) 1, 2 and 4

(c) 2, 3 and 4

(d) 1, 3 and 4

Ans. (b)

- Q. 110. The critical speed of a shaft is affected by the
 - (a) diameter and the eccentricity of the shaft
- (b) span and the eccentricity of the shaft
- (c) diameter and the span of the shaft
- (d) span of the shaft

Ans. (b)

Q. 111. Match List I (Applications) with List II (Joints) and select the correct answer using the codes given below the Lists:

List I		List II
Roof girder	1.	Hook's joint
Cylinder head of an IC engine	2.	Screwed joint
Piston rod and cross head	3.	Cotter joint
Solid shaft and a plate	4.	Welded joint

Codes:

A.B.C.

	Α	В	C	D .	Α	В	С	D
(a)	5	3	1	4			3	
(c)	5	2	3	4			1	

Ans. (c)

- Q. 112. The following parameters are to be calculated while designing screw jack.
 - 1. Core diameter of screw
- 2. Torque required to rotate the screw

Riveted joint

3. Principal stresses

4. Height of the nut

The correct sequence of the calculation of these parameters is

(a) 1, 2, 4, 3

(b) 1, 2, 3, 4

(c) 2, 1, 3, 4

(d) 2, 1, 4, 3

Ans. (c)

ENGINEE	RING	SERVICES	EXAMIN	IATION	- SOLVED P	APER:	3					1221
Q. 113.	1. D 2. B 3. St	irect stres	s due to esses du e to initi	weigh ie to be	t hoisted and ending of ro	d wei	n respect of a ght of the rop er the sheave	e	пд гор	e durin	g accelera	ation of
	Which of these are the correct types of stresses induced in a hoisting rope during acceleration of load?											
Ans.	(a) 1	, 2 and 3		(b)	2, 3 and 4		(c) 1, 2 a	and 4		(d) 1,	3 and 4	
Ans.	1. It 2. It 3. It 4. It 5. It Whic (a) 1 (a)	need not lenables the picks up to will not so is very us to of these, 2 and 4	be unloa ne prime he load lip to the eful whe e are the	e move gradua e point en the p e advan (b)	fore engage r to start up ally with the of destructi power unit hatages of cer 1, 3 and 5	ement under incre on nas a ntrifu	r no-load cone case in speed low starting to gal clutch? (c) 2, 3 a	ditions. orque and 5			3, 4 and :	
Q. 115.	Matc	th List I v	vith List	II and	select the o	correc	t answer usin	g the c	odes giv	ven belo	w the Lis	ts:
				st I				L	ist II			
	A. B. C.	Compou Quick re Exact str	turn me	chanis		1. 2. 3.	Coriolis for Transmission	ce on of r	notion	around	bends	
	D.		mate str	aight l	ine motion	4.	and corners Watt mecha					
		A	В	C	D			Α	В	С	D	
	(a) (c)	1 3	2 4	3 1	4 2		(b) (d)	3	2 4	1 3	4 .	
Ans.	` '	-	•	•	-		(u)	1	4	3	2	
Q. 116.	Mate using	th List I ((Kinema es give	atic inv belov	versions) w w the Lists	ith L :	ist II (Applic	ations)	and se	lect the	correct	answer
	A.		Li	st I]	1.	Hand pump	Li	ist II			

3. Whitworth quick return mechanism

4. Oscillating Cylinder Engine

Codes:

	Α	В	С	D
(a)	1	3	4	2
(c)	2	3	4	-1

A B C D
(b) 2 4 3 1
(d) 1 4 3 2

Ans. (c)

Q. 117. Match List I (Applications) with List II (Features of vibration) and select the correct answer using the codes given below the Lists:

List I

- A. Vibration damper
- B. Shock absorber
- C. Frahm tachometer
- D. Oscillator

List II

- 1. Frequency of free vibration
- 2. Forced vibration
- 3. Damping of vibration
- 4. Transverse vibration
- 5. Absorption of vibration

Codes:

	Α	В	C	D
(a)	5	3	2	1
(c)	- 5	3	4	1

A B C D
(b) 3 1 4 2

Ans. (a)

Q. 118. Match List I (Keys) with List II (Characteristics) and select the correct answer using the codes given below the Lists:

List I

- A. Saddle key
- B. Woodruff key
- C. Tangent key

- List II
- 1. Strong in shear and crushing
- 2. Withstands tension in one direction
- 3. Transmission of power through frictional resistance
- D. Kennedy key 4. Semicircular in shape

Codes:

	Α	В	C	D
(a)	3	4	1	2
(c)	4	3	1	2

	A	В	C	D
(b)	4	3	2	1
(d)	3	4	2	1

Ans. (d)

List I

Q. 119. Match List I (Applications) with List II (Drive element) and select the correct answer using the codes given below the Lists:

		List	Į.			Lis	st II			
A.	Automo	bile diff	erential		1.	Flat bel	t			
В.	. Bicycle				2.	V-belt				
C.	Planing	machin	e		3.	Chain d	lrive			
D.					4.	Gear dr	ive			
Code	es :									
	Α	В	C	D			Α	В	C	Ď
(a)	4	3	1	2		(b)	1	3	`4	2
(c)	4	2	1	3		(d)	1	2	4	3
Ans. (a)										

Q. 120. Match List I with List II and select the correct answer using the codes given below the Lists:

Α.	Unwin's	formul	a		1.	Bearing	S			
В.	Wahl fac	ctor			2.	Rivets				
C.	Reynold	's equa	tion		3.	Gears				
D.	Lewis fo	orm fact	or		4.	Springs				
Code	es :									
	Α	В	С	D			A	В	С	D
(a)	1	4	2	3		(b)	2	3	1	4
(c)	· 1	3	2	4		(d)	2	4	1:	3
Ans. (d)										

List II

I.E.S. (Objective)

MECHANICAL ENGINEERING-2001

PAPER - I

			and the second second
Q. 1. If p_v is the part	ial pressure of vapour,	p_s is the partial pressu	re of vapour for saturated air
and p_b is the va	cometric pressure, the re	lationship between rela	ative humidity '\phi' and degree
or saturation 'µ'	is given by	•	was something of and degree
$(a) \mu = \phi \left[\frac{p_b - p}{p_b - p} \right]$	<u>s</u> .	$p_b - p_v$	}
$p_b - p$,]	$(b) \mu = \phi \left \begin{array}{c} p_b - p_v \\ p_b - p_s \end{array} \right $	
(c) $\mu = \phi \frac{p_v}{p_h}$	•		
$(c)\mu - \psi \frac{1}{p_b}$		$(d) \mu = \phi \frac{p_{\nu}}{p_{s}}$	
Ans. (a)		• •	
will be	or of single cooling coing coils with the same	l in an air-conditioner apparatus dew point ar	is 0.7. The by-pass factor, if the kept one behind the other,
(a) 0.210	(b) 0.292	(c) 0.343	(d) 0.412
Ans. (c)		()	(4) 0.412
Q. 3. Which one of the	following statements is	true for air condition	ing duct design 2
and flow is b	method is used, when tha alanced	e duct work is extensi	ve, total pressure drop is low
(b) Static regain and flow is u	method is used, when th	e duct work is extensiv	re, total pressure drop is high
	method is used, when the	ne duct work is extensi	ve, total pressure drop is low
		and manufacture of	
flow is unbala	inced 's used, when d	uct work is extensive, t	otal pressure drop is low and
Ans. (c)			
Q. 4. For an-conditions	ed space. RTH = 100 kg	V· PSHE = 0.75l	me flow rate is equal to 100
m ³ /minute and inc	loor design specific humi	dity is 0.01 ka/ka se a	ry air). The specific humidity
of supply air is	and design specific fluid	dity is 0.01 kg/(kg of d	ry air). The specific humidity
(a) 0.010	(b) 0.0075	(c) 0.005	(d) 0.0025
Ans. (c)			• •
infiltration is esti	mated to be one air cha	o be air-conditioned is	and dry bulb temperatures are 20 m × 30 m × 5 m and specific heat of air are 1.2
(kg of dry air)/m ³ is, nearly	and 1.02 kJ/(kg of dry a	ir)°C, then the sensible	heat load due to infiltration
(a) 122.4 kW Ans. (d)	(b) 61.2 kW	(c) 12.24 kW	(d) 20.4 kW
	int IT and a large		
(m _m — mass trai	isier coefficient,	D — molecular d	les given below the lists:
L — characteris	tic length dimension,		uctivity, ρ — density,
C_p — specific h	eat at constant pressure,	μ — dynamic viso	cosity)
		•	
,	•		

List-I

List-II

B. Thermal diffusivity

Schmidt number

2.

C. Lewis number 3. ρD

Sherwood number

4.

Codes:

В D В C D (a) 3 2 1 **(b)** 3 1 2 (c) 2 1 (d) 2

Ans. (c)

Q. 7. In the operation of four-stroke diesel engines, the term 'squish' refers to the

(a) injection of fuel in the precombustion chamber

- (b) discharge of gases from the precombustion chamber
- (c) entry of air into the combustion chamber

(d) stripping of fuel from the core

Ans. (a)

- Q. 8. Consider the following statements regarding the advantages of fuel injection over carburetion in S.I. engines:
 - 1. Higher power output and increased volumetric efficiency.
 - 2. Simple and inexpensive injection equipment.
 - 3. Longer life of injection equipment.
 - 4. Less knocking and reduced tendency for back-fire.

Select the correct answer using the codes given below:

Codes:

(a) 1, 2 and 3 Ans. (d)

(b) 1, 2 and 4

(c) 2 and 3

(d) I and 4

Q. 9. Match List-I (Performance Parameter Y) with List-II (Curves labelled 1, 2, 3, 4 and 5 BHP vs. Y) regarding a C.I. engine run at constant speed and select the correct answer using the codes given below the lists:

(Performance Parameter Y)

- Total fuel consumption rate
- Mechanical efficiency
- Indicated power
- D. Brake specific fuel consumption

Code	es :									
	Α	В	С	D			Α	В	C	D
(a)		3	4	2		(b)	1	3	4	2
(c)		4	2	3		(d)	1	4	2	3
ns. (a)										
10. Mat	ch List-I w	ith List	-II and	select the	correct an	swer using	g the co	odes giv	en belo	w the lists
		Li	st-I				List-l	I		
Α.	Superch	arging			1.	Multicy	linder e	ngine		
В.	Morse to				2.	C.I. eng	ine			
C.	Heterog	eneous (combus	tion	3.	Calorifi				
D.	Ignition of	quality of	f petrol		4.	Aircraft				
					5.					
4					6.	Single o	ylinder	S.I. en	gine	
Cod	les :									
	• A	В	С	D			Α	В	С	D
(a) 4	1	2	5		(b)	6	3	2	5
(c) 6	1	5	2		(d)	4	3 .	5	2
1. 2. 3. 4. Wh	Efficiency Exit veloc Stagnation Rocket enich of these	of Rocities of condingines	cket en exhaus tions ex are air-l nents ar	gines is hear is to gases in xist at the breathing	nigher that Rocket e combust engines?	n that of ngines are	Jet eng much ber in	gines higher	than the	ose in Jet
1. 2. 3. 4. Wh (a) Ans. (a) 2. 12. Wi 1. 2. 3.	Efficiency Exit veloc Stagnation Rocket en ich of their 1 and 2 th respect Evaporati Blow by Exhaust around 5	of Rocities of n condingines as stater to I.C. ive emi emissioemissio 0-55%	exhause tions exare air-lenents are (b) engine ssions lons are only of hydroforms.	gines is he tigases in xist at the breathing recorrect 1, 3 and 4 recemission have no cuessentiall tain 100% recarbons	Rocket e combust engines?	n that of ngines are ion cham (c) 2, 3 er the followoxide are monoxide on monoxide on the engine of the engine o	Jet engermuch ber in and 4 lowing and oxide and skide, 10 gine.	higher Rocket statem les of rouspend	than the engine (d) 1 ments: nitrogen ed part	ose in Jet s , 2 and 3
1. 2. 3. 4. Wh (a) Ans. (a) 2. 12. Wi 1. 2. 3.	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are	of Rocities of n condingines a se stater to I.C. ive emi emissio 0-55% e no su	exhause tions exare air-lenents are (b) engine ssions lons are only of hydroforms.	gines is he tigases in xist at the breathing recorrect 1, 3 and 4 recemission have no cuessentiall tain 100% recarbons	Rocket e combust engines?	n that of ngines are ion cham (c) 2, 3 er the followoxide are monoxide on monoxide on the engine of the engine o	Jet engermuch ber in and 4 lowing and oxide and skide, 10 gine.	higher Rocket statem les of rouspend	than the engine (d) 1 ments: nitrogen ed part	ose in Jet s , 2 and 3
1. 2. 3. 4. Wh (a) Ans. (a) 2. 12. Wi 1. 2. 3.	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state	of Rocities of n condingines as stater to I.C. ive emi emissio 0-55% e no surements	exhaustions exare air-inents ar (b) engine ssions is ons are on confort hydrospendece	gines is he tigases in xist at the breathing recorrect 1, 3 and 4 recemission have no cuessentiall tain 100% recarbons	Rocket e combust engines? ns, consideration money carbon of of carb emitted the	n that of ngines are ion cham (c) 2, 3 er the follonoxide ar monoxide on monoxide exhaust.	Jet enge much ber in and 4 lowing nd oxide and skide, 10 gine.	higher Rocket statem les of rouspend 00% of	than the engine (d) 1 ments: nitrogen ed part	ose in Jet s , 2 and 3
1. 2. 3. 4. Wh (a) Ans. (a) 1. 2. 3. 4. Of (a)	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 and 5	of Rocities of n condingines as stater to I.C. ive emi emission condinger in the condinging of the condinate of the condinging of the cond	exhaustions exare air-inents ar (b) engine ssions in the same control hydrospended ct	gines is he tigases in xist at the breathing recorrect 1, 3 and 4 recemission have no cuessentiall tain 100% recarbons	Rocket e combust engines? ns, consideration moy carbon for carb emitted that in the	n that of ngines are ion cham (c) 2, 3 er the follonoxide as monoxide on monoxide exhaust.	Jet enge much ber in and 4 lowing nd oxide and skide, 10 gine.	statem les of r suspend	than the engine (d) I ments: nitrogen ed part oxides	ose in Jet s , 2 and 3
1. 2. 3. 4. Wh (a) Ans. (a) 1. 2. 3. 4. Of (a) (c)	Efficiency Exit veloc Stagnation Rocket en ich of thes 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an	of Rocities of n condingines as stater to I.C. ive emi emission condinger in the condinging of the condinate of the condinging of the cond	exhaustions exare air-inents ar (b) engine ssions in the same control hydrospended ct	gines is he tigases in xist at the breathing recorrect 1, 3 and 4 recemission have no cuessentiall tain 100% recarbons	Rocket e combust engines? ns, consideration moy carbon for carb emitted that in the	n that of ngines are ion cham (c) 2, 3 er the follonoxide ar monoxide on monoxide exhaust.	Jet enge much ber in and 4 lowing nd oxide and skide, 10 gine.	statem les of r suspend	than the engine (d) I ments: nitrogen ed part oxides	ose in Jet s , 2 and 3
2. 3. 4. Wh (a) Ans. (a) 2. 12. Wi 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A	Efficiency Exit veloc Stagnation Rocket en ich of thes 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an	of Rocities of n condingines as stater to I.C. ive emi emission 0-55% e no surements re corrector fuel to fuel	cket en exhaus tions er are air-i nents ar (b) engine sssions i ons are ons conf of hydr spendec ct ct was bu	gines is hat gases in xist at the breathing recorrect (1, 3 and 4 recorrect (1) and 4	Rocket e combust engines? ns, consideration more y carbon for carbon emitted lates in the	(c) 2, 3 for the follonoxide at monoxide on monoxide exhaust. (b) 1 and (d) 1, 2, 3	Jet enge much ber in and 4 lowing and oxide and skide, 10 gine.	statem statem les of r suspend 00% of	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ	, 2 and 3 . iculate mass of nitro
1. 2. 3. 4. Wh (a) Ans. (a) 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A yie	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 at 2 and 3 an hydrocarbelded the	to I.C. ive emission of summer corrections of summer correction fuel following the states of the correction fuel following the correction fuel fuel fuel fuel fuel fuel fuel fuel	cket en exhaus tions es are air- nents ar (b) engine ssions l ons are ons cont of hydr spendec ct ct was bu ng data	gines is heat gases in exist at the breathing recorrect 1, 3 and 4 received and 1, 3	Rocket e combust engines? ns, consideration more y carbon for carbon emitted lates in the	(c) 2, 3 for the follonoxide at monoxide on monoxide exhaust. (b) 1 and (d) 1, 2, 3	Jet enge much ber in and 4 lowing nd oxide and skide, 10 gine.	statem statem les of r suspend 00% of	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ	, 2 and 3 . iculate mass of nitro
1. 2. 3. 4. Wh (a) Ans. (a) 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A yie V	Efficiency Exit veloc Stagnation Rocket en ich of thes 1 and 2 th respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an hydrocarb elded the initial volume olume aft	to I.C. ive emi emission confuel following of dry	exhaustions exare air-linents ar (b) engine ssions lons are on conformation of hydrospended to the ct.	gines is heat gases in a sist at the breathing recorrect of 1, 3 and 4 a	Rocket e combust engines? ns, consideration more y carbon for carbon emitted lates in the carbon that it and the	(c) 2, 3 for the followide an monoxide an monoxide on monoxide exhaust. (b) 1 and (d) 1, 2, 3 Orsat ana	Jet enge much ber in and 4 lowing nd oxide and skide, 10 gine.	statem les of r suspend orrect are corre	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ	, 2 and 3 . iculate mass of nitro
1. 2. 3. 4. Wh (a) Ans. (a) 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A yie V po	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 ith respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an hydrocarb elded the itial volum olume aft otassium h	to I.C. ve emi emission 0-55% e no surements re corrector full following en absolution de of driver ab	cket en exhaus tions er are air-i nents ar (b) engine ssions i ons are ons conf of hydr spendec ct ct was bu ng data y gas sa orption e solution	gines is heat gases in xist at the breathing recorrect 1, 3 and 4 recorrect 1, 3 and 4 recorrect and 1, 3 a	nigher that Rocket expenses expenses? ns, consideration may carbon may carbon may carbon emitted bates in the contains of the contains and the contains and the contains are contains and the contains and the contains are contains and the contains are contains and the contains are contains are contains are contains and the contains are contai	n that of ngines are ion cham (c) 2, 3 er the follonoxide are monoxide on monoxide exhaust. (b) 1 and (d) 1, 2, 3 Orsat ana	Jet engermuch ber in and 4 lowing and oxide and skide, 10 gine.	statem les of rouspend 00% of	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ 100 89 (, 2 and 3 i. iculate mass of nitro
1. 2. 3. 4. Wh (a) Ans. (a) Q. 12. Wi 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A yie V	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 th respect Evaporate Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an hydrocarb elded the itial volume olume aft olume aft	of Rocities of n condingines a se stater to I.C. ive emi emission 0-55% e no surements re correcton fuel following of dried absorption of dried per absorption of dried er absorption of dried absorption of dried er absorption of d	cket en exhaus tions er are air-i nents ar (b) engine ssions i ons are ons coni of hydr spendec ct ct was bu ng data y gas sa orption e solution	gines is heat gases in exist at the breathing recorrect? 1, 3 and 4 e emission have no concessentially the essentially the e	nigher that Rocket expenses combust engines? ns, consideration may carbon may carbon more emitted that in the carbon area in the carbon area in the carbon area.	n that of ngines are ion cham (c) 2, 3 er the followoxide are monoxide are exhaust. (b) 1 and (d) 1, 2, 3 Orsat analyting	Jet enge much ber in and 4 lowing and oxice and skide, 10 gine.	statem les of rouspend 00% of	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ	, 2 and 3 i. iculate mass of nitro
1. 2. 3. 4. Wh (a) Ans. (a) Q. 12. Wi 1. 2. 3. 4. Of (a) (c) Ans. (c) Q. 13. A yie V	Efficiency Exit veloc Stagnation Rocket en ich of the 1 and 2 ith respect Evaporati Blow by Exhaust around 5 There are these state 1 and 4 an 2 and 3 an hydrocarb elded the itial volum olume aft otassium h	of Rocities of n condingines as stater to I.C. ive emi emission condingines as stater to I.C. ive emi emission con fuel following of dried of dried as so by grogall	exhaustions exare air-inents are (b) engine ssions is ons are on conformation of hydrospended to the ct. was burned at a y gas sa orption is acid a conficultion ic acid a	gines is heat gases in exist at the breathing recorrect? 1, 3 and 4 e emission have no concessentially the essentially the e	nigher that Rocket excombust engines? ns, consideration may carbon may carbon may carbon emitted lates in the lates in th	n that of ngines are ion cham (c) 2, 3 er the fol onoxide ar monoxide on monoxide exhaust. (b) 1 and (d) 1, 2, 3 Orsat anaming oxide	Jet enge much ber in and 4 lowing and oxide and skide, 10 gine.	statem les of rouspend 00% of the dr	than the engine (d) 1 ments: nitrogen ed part oxides ect y produ 100 89 (, 2 and 3 . iculate mass of nitro

	The	percentag	e (by vo	lume)	of CO ₂ in	the dry pr	roducts wa	ıs				
	(a) 2			(<i>b</i>)			(c) 11%			(d) 18	3%	
Ans	. (c)				*							
Q. 14	. Mato	ch List-I (w the list	Materia	l) wit	h List-II ((Use) and	select the	corre	ct answ	er using	the coo	des give
		List-	l (Mate	rial)			Lis	t-II (l	Jse)			
	Á.	Graphite	;			1.	Coolan	t			•	
	В.	Thorium	-233			2.	Modera	tor				
	C.	Molten S	Sodium			3.	Fission	able m	aterial			
	D.	Plutoniu	m-239			4.	Fissile 1	materia	al			
	Code	es:										
		Α	В	C	D			Α	В	С	D	
	(a)	1	4	2	3		(b)	2	4	1	3	
	(c)	2	3	I	4		(d)	1	3	2	4	
Ans		_										
Q. 15.	The $Q_1 =$	data give Heat reco	n in the eived (k.	table J/min)	refers to $Q_2 =$	an engin Heat reje	e based o	n Carı), V	ot cycl W = Wor	e, wher k outpu	e t (kW)	
		S. No.			Q_1		Q_2			W		•
		1.			1500		16.80			8.20		•.
		2.			1600		17.92			8.75		
		3.			1700	•	19.03			9.30		
		4.			1800		20.15			9.85		
	If he	at received	hv the	engine	is 2000 k	I/minuto	the work o		:11 L			•
Ans.	(a) 9	.98	oy uic	(<i>b</i>)	10.39	J/mmute	(c) 11.54		viii be, i	(d) 10).95	
		stem whi	le under	oning	a cycle							
C 23.	A —	B C	- D A	has t	he values	of heat an	d work tra	nsfers	as given	in the t	able:	
		Proc				Q				W		,
						kJ/min			kJ/	min		_
		A				+ 687			+	174		
		В —	- C			- 269				0		
		C —	D			- 199			_	180		
,		D	· A			+ 75			(0		
		ower dev	eloped i									
A	(a) 4.	9		(b) 2	24.5		(c) 49			(d) 98		
Ans.				_		4 4						
Q. 17.	are l	new temp 00°ρand ρon the	300° ρ :	respec	tively. Co	e boiling orrelate th	and freezi is scale w	ng poi	nts of w Centig	ater at rade sca	one atmale. The	nosphere reading
	$(a) 0^{\circ}$		Contigi	(b) 5			(c) 100°C	2		(d) 15	0°C	
Ans.	(d)			•						• • •	e.	

Q. 18. Match List-I (Name of entity) with List-II (Definition) and select the correct answer using the codes given below the lists:

List-I (Name of entity)

List-II (Definition)

A. Compressibility factor

1.
$$-\frac{1}{\nu} \left(\frac{\partial v}{\partial T} \right)$$

B. Joule-Thomson coefficient.

2.
$$\left(\frac{\partial h}{\partial T}\right)$$

C. Constant pressure specific heat

3.
$$\left(\frac{\partial T}{\partial p}\right)$$

D. Isothermal compressibility

4.
$$\left(\frac{pv}{RT}\right)$$

Codes:

	Α	В	C	D
(a)	2	. 1	4	3
(c)	2	3	4	1

Ans. (b)

Q. 19. If p_a and p_v denote respectively the partial pressure of dry air and that of water vapour in moist air, the specific humidity of air is given by

$$(a) \frac{p_{\nu}}{p_{\mu} + p_{\nu}}$$

$$(b)\,\frac{p_v}{p_a}$$

$$(c) \frac{0.622 p}{p}$$

(d)
$$\frac{0.622 p_1}{P_1 + p_2}$$

Ans. (c)

Q. 20. Consider the phase diagram of a certain substance as shown in the given figure. Match List-I (Process) with List-II (Curves/lines) and select the correct answer using the codes given below the lists:

List-I (Process)

List-II (Curves/lines)

A. Vaporization

1. EF

B. Fusion

2. EG

C. Sublimation

3. ED

2

Codes:

	Α	В	C
(a)	1	3	2
(a)	3	2	1

(b) A B C (b) 1 2 3

(c) 3 2 1

(d) 3 1

Ans. (a)

Q. 21. Number of components (C), phase (P) and degrees of freedom (F) are related by Gibbs-phase rule as

(a)
$$C - P - F = 2$$

(b)
$$F - C - P = 2$$

(c)
$$C + F - P = 2$$

(d)
$$P + F - C = 2$$

Ans. (d)

Q. 22. Consider the following statements:

1. Availability is the maximum theoretical work obtainable.

2. Clapeyron's equation for dry saturated steam is given by

$$(V_g - V_f) = \frac{dT_s}{dQ} \left[\frac{h_g - h_f}{T_s} \right].$$

- 3. A gas can have any temperature at a given pressure unlike a vapour which has a fixed temperature at a given pressure.
- 4. Joule Thomson coefficient is expressed as $\mu = \left[\frac{\partial s}{\partial p} \right]_{h}$

Of these statements

(a) 1, 2 and 3 are correct

(b) 1, 3 and 4 are correct

(c) 2 and 3 are correct

(d) 1, 2 and 4 are correct

Ans. (a)

Q. 23. Match List-I with List-II and select the correct answer using the codes given below the lists:

List-I
(Cycles operating between
fixed temperature limits)

List-II
(Characteristic of cycle efficiency n)

- A. Otto cycle
- B. Diesel cycle
- C. Carnot cycle
- D. Brayton cycle
- η depends only upon temperature limits
- 2. η depends only on pressure limits
- 3. η depends on volume compression ratio
- 4. η depends on cut-off ratio and volume compression ratio

Codes:

	Α	В	C	D	Α	В	С	D
(a)	3	4	1	2	1			
(c)	3	. 2	1	4	1			

Ans. (a)

Q. 24. The temperature-entropy diagram for a steam turbine power plant, operating on the Rankine cycle with reheat and regenerative feed heating is shown in the given figure. If m denotes the fraction of steam bled for feed heating, the work developed in T the turbine per kg steam entering the turbine at state 5 is

(a)
$$(h_5 - h_4) + (1 - m)(h_3 - h_1)$$

(b)
$$(h_5 - h_4) + (h_3 - h_2) + (1 - m)(h_2 - h_1)$$

(c)
$$2h_5 - h_4 - h_2 + (1 - m)(h_2 - h_1)$$

$$(d) (h_5 - h_4) + (1 - m) (h_3 - h_2)$$

Ans. (a)

- Q. 25. The working temperatures in the evaporator and condenser coils of a refrigerator are -30° C and 32° C respectively. If the actual refrigerator has a C.O.P. of 0.75 of the maximum, the required power input for a refrigerating effect of 5 kW is, nearly,
 - (a) 1.7 kW
- (b) 2.94 kW
- (c) 3.92 kW
- (d) 4.0 kW

Ans. (a)

O. 26. Match List-I with List-II and select the correct answer using the codes given below the lists:

• -					
		List-I		List-II	
	A.	Air standard efficiency of Otto cycle	1.	Mechanical efficiency	
	В.	Morse test	2.	Diesel cycle	
	C.	Constant volume cycle	3.	Brake thermal efficiency	
	D.	Constant pressure heat addition	4.	Otto cycle	

Codes:

Ans. (a)

Q. 27. Match List-I (Fuels) with List-II (Characteristics/usages) and select the correct answer using the codes given below the lists:

List-I (Fuels)

List-II (Characteristics/usages)

	List 1 (1 ucts)		Elsi II (Characteristics asages
A.	Semi-bituminous coal	1.	Methane and carbon dioxide
B.	High-speed diesel oil	2.	Propane and butane
C.	Biogas	3.	Calorific value of 10,600 kCal/kg
D.	LPG	4.	Power plants
0.1			

Codes:

Ans. (b)

- Q. 28. Consider the following statements:
 - 1. Motor gasoline is a mixture of various hydrocarbons with a major proportion being aromatic hydrocarbons.
 - 2. Compressed natural gas is mainly composed of methane.
 - 3. Producer gas has a predominant component of hydrogen with lesser proportion of carbon monoxide.
 - 4. Cetane number of fuel used in diesel engines in India is in the range of 80 to 90.

Which of these statements are correct?
(a) 1 and 2

(b) 1 and 3

(c) 2, 3 and 4

(d) 1, 2, 3 and 4

Ans. (b)

- Q. 29. Consider the following statements:
 - 1. For the combustion of pulverised coal, 5 to 10% excess air is required.
 - 2. Air contains 21% oxygen by weight.
 - 3. The flue gases from a coal-fired furnace contain around 70% nitrogen by volume.
 - 4. In the combustion of liquid fuels, the number of moles of the products are invariably greater than the number of moles of the reactants.

Of these statements

		2 and 4 a				(b) 1, 3 and 4 are correct							
		3 and 4 ai	e corre	ct		(d) 1 and 3 are correct							
Ans.	(a)												
Q. 30.	Matc answ	h items in er using t	n List- he cod	I (Proc es give	ess) with	h those in the lists	List-II (Charac	teristic)	and so	elect th	e correct	
		List-I	(Proc	ess)			List-l	II (Ch	aracter	istic)			
	Α.	Throttling	g proce	ss		1.	No wor	k done					
	В.	Isentropio	proces	SS		2.	No char	nge in e	ntropy				
	C.	Free expa	nsion			3.	Constant internal energy						
	D.	Isotherma	al proce	ess		4.	Constan	nt entha	lpy				
	Code	s:											
		Α	В	Ċ	D			Ά	В	C	D		
	(a)	4	2	I	3		(<i>b</i>)	1	2	4	3		
	(c)	4	3	1	2		(d)	1	3	4	2		
Ans.	(a)												
Q. 31. Ans.	force (a) 2	side at the on any v	e base.	If the	tank is o that at	section is filled up t the botton	with a lig	s heigh	nt equal e ratio	to twi of the $(d) 0$.	total hy	length of ydrostatic	
Q. 32.	of oi (a) 7.	rential pr l is 0.9) e .62 m of o	quival	ent to a	neasured a 600 mi 76.2 m of	by mercu m differen oil	ce of med (c) 7.34	rcury l	evels w	ill near	(specifi ly be 47 m of		
Q. 33. Ans.	merg alum (a) 1	ed into a	tank	contair e tensio	ning oil	of 12 kg of relativ wire will	e density	g = 10	Faking	and lo the rel (<i>d</i>) 80	ative d	until sub- ensity of	
		20		1.10									
Q. 34.	posit heigh	ion. If its nt is	centre	of gra	vity is 2	nas a draft 5 m abov	of 3 m, we the bot	vhen fl tom, th	oating v ne neard	with its est valu	sides in	n vertical etacentric	
		.28 m		(b) 2	2.78 m		(c) 1.78	m		(d) ze	ro		
Ans.													
Q. 35.	horiz	ontally at n the ves	an ac	celerat	ion equa id at sta	ht equal to il to accel- tic equilib	eration di	ue to g	ravity.	with lift The raid (d) 0.	tio of t	d moved he liquid	
Ans.	(c)						` ,						
Q. 36.	paral	lel plates	ss dev	apart a	nd movi	oricating o	lative vel	locity o	of 2 m/s	s is		ween two	
	` '	0 N/m ²		(b) 1	19.62 N/	m²	(c) 29.62	2 N/m ²	<u>.</u>	(d) 40	$0 N/m^2$		
Ans.	(b)												

Ans. (*d*)

Ans. (c)

(a) 300 mm

Q. 31.	1110	2 2.	e acce	ici alion	oi iiuia in	ine	x-direction i	-	n by			
	(a) u	$\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y}$	$\frac{7}{3} + \omega \frac{\partial \Omega}{\partial z}$	<u>ω</u>			$(b)\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t}$	$+\frac{\partial\omega}{\partial \omega}$				
		,		~			Oi Oi	Q1	ди			
	(c) u	$\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial y}$	$\frac{7}{7} + \omega \frac{3}{6}$	z			(d) $\mu \frac{\partial u}{\partial x} + 1$	$v \frac{\partial u}{\partial y} +$	$\omega \frac{\partial z}{\partial z}$			
Ans.	(b)							•	-			
Q. 38.	Mate using	ch List-I (g the code	(Types es give	of flow	w) with Lis w the lists :	t-II (Basic ideal	flows)	and se	lect the	correct	answe
		Li.	st-I (Ty	pes of fi	low)		List-II	(Basic	ideal fl	ows)		
	A.	Flow ove	er a stat	ionary	cylinder	i.	source + si		_			
	₿.	Flow over		-	•	2.	doublet + u					
	C.	Flow over	er a rota	ting bo	dy	3.	source + ur	niform	flow			
	D.	Flow ove	er a Rar	ikine ov	/al	4.	doublet + f	ree vor	tex + ui	niform f	low	
	Code	?s :										
		Α	В	C	D			Α	В.	С	D	
	(a)	i	4	3	2		(<i>b</i>)	2	4	3	1	
	(c)	1	3	4	2		(d)	2	3	4	1	•
Ans.	(d)											
Ans.	the t (a) 0	e the tube ube√is, ne .89 m/s	e is 50	mm h	igher than i	the s	d upstream a urface of flo (c) 1.40 i	owing	oil. The	e veloc	ity measi	ured by
Q. 40.	press cm. 'that	sure head The reduc the pressu	is 32 c tion in are head	m and area at d drops	tal line, the velocity he location II down to z	ad is is su ero.	4 ()			II.		
	(a) 3			(b) 2			(c) 2			(d) 1.5	5	
Ans.	(a)									` '		
Q. 41.	For r	naximum iction <i>h_f</i> i	transm s given	ission by	of power th	roug	h a pipe line	with t	total he	ad <i>H</i> , tł	ne head l	ost due
	(a) 0	.1 H		$(b)^{\frac{1}{2}}$	1 3		$(c)\frac{H}{2}$			$(d)\frac{2H}{3}$	<u>!</u>	
Ans.	(b)			•			-			3		
Q. 42.	is as	ect two re sumed to ler dia pi	eservon be equ	rs. The ual, the nearly,	difference	in w	ameters of 1 ater levels in scharges due	n the re	eservoir	s is 3 r	n. If the be to that	friction

(c) 2.25

(c) 0.972 m

Q. 43. The critical depth of a rectangular channel of width 4.0 m for a discharge of 12 m³/s is nearly,

(b) 30 mm

(d) 1.5

(d) 0.674 m

Q. 37. The convective acceleration of fluid in the x-direction is given by

Q. 51. Match List-II with List-II and select the correct answer using the codes given below the lists:

List-II List-I A. Stokes' law 1. Strouhal number 2. Creeping motion B. Bluff body C. Streamline body 3. Pressure drag 4. Karman Vortex Street Skin friction drag Codes:

	Α	В	C	D		Α	В	C	D
(a)	2	3	1	4	(b)	3	2	4	1
	2				(d)	3	2	1	4

Ans. (a)

Q. 52. Match List-I (Dimensionless numbers) with List-II (Definition as the ratio of) and select the correct answer using the codes given below the lists:

List-I (Dimensionless numbers)

List-II (Definition as the ratio of)

- A. Reynolds number
- Froude number
- C. Weber number
- D. Mach number

- 1. Inertia force and elastic force
- Inertia force and surface tension force
- 3. Inertia force and gravity force
- 4. Inertia force and viscous force

Codes:

	· . A	В	С	D		Α	В	C	D
(a)	1	2	3	4	(b)	4	3	2	1
(c)	1	3	2	4	(d)	4	2	3	1

Ans. (b)

Q. 53. The stream function in a 2-dimensional flow field is given by $\psi = xy$. The potential function is

(a)
$$\frac{(x^2+y^2)}{2}$$

(b)
$$\frac{(x^2-y^2)}{2}$$

$$(d) x^2 y + y^2 x$$

Ans. (d)

Direction: The following 16 (sixteen) items consist of two statements, one labelled the Assertion (A) and the other labelled the 'Reason (R)'. You are to examine these two statements carefully and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your answer sheet accordingly.

Codes:

- (a) Both A and R are true and R'is the correct explanation of A
- (b) Both A and R are true but R is NOT a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q. 54. Assertion (A): A convergent-divergent nozzle may give supersonic or subsonic flow at the exit even if the throat is choked.

Reason (R): Depending on the back pressure ratio p_b/p_0 , the divergent part of the nozzle may act as a supersonic nozzle or a subsonic diffuser.

Ans. (a)

Q. 55. Assertion (A): In a pipe line, the nature of the fluid flow depends entirely on the velocity. Reason (R): Reynolds number depends on the velocity, diameter of the pipe and kinematic viscosity of the fluid.

Ans. (d)

Q. 56. A capillary tube is inserted in mercury kept in an open container. Assertion (A): The mercury level inside the tube shall rise above the level of mercury outside. Reason (R): The cohesive force between the molecules of mercury is greater than the adhesive force between mercury and glass. Ans. (a)

Q. 57. Assertion (A): Reaction blading is commonly used in intermediate and low pressure parts of

Reason (R): Reaction blading gives higher efficiency than impulse blading.

Q. 58. Assertion (A): In conventional impulse steam turbine designs, only two rows of moving blades are used in a Curtis stage. Reason (R): As the number of rows of moving blades in a Curtis stage increases, the effectiveness of the later rows decreases.

Ans. (a)

Q. 59. Assertion (A): With throttle governing of a steam turbine, the turbine power is reduced by reduction in the available heat drop together with decrease in the rate of steam flow. Reason (R): The pressure and the rate of steam flow are simultaneously decreased with the help of a throttle valve.

Ans. (a)

Q. 60. Assertion (A): A Kaplan turbine is an axial flow reaction turbine with its vanes fixed to the hub. Reason (R): Water flows parallel to the axis of rotation of the turbine and a part of the pressure energy gets converted to kinetic energy during its flow through the vanes. **Ans.** (a)

Q. 61. Assertion (A): Effective temperature, an index of comfort, is defined as that temperature of saturated air at which one would experience the same feeling of comfort as experienced in the actual environment.

Reason (R): Comfort does not depend on humidity and air velocity.

Ans. (c)

Q. 62. Assertion (A): According to Reynolds analogy for Prandtl number equal to unity, Stanton number is equal to one half of the friction factor. Reason (R): If thermal diffusivity is equal to kinematic viscosity, the velocity and the temperature distribution in the flow will be the same.

Ans. (c)

Q. 63. Assertion (A): Nusselt number is always greater than unity. Reason (R): Nusselt number is the ratio of two thermal resistances, one the thermal resistance which would be offered by the fluid, if it was stationary and the other, the thermal resistance associated with convective heat transfer coefficient at the surface. Ans. (b)

Q. 64. Assertion (A): If the enthalpy of a closed system decreases by 25 kJ while the system receives 30 kJ of energy by heat transfer, the work done by the system is 55 kJ. Reason (R): The first law energy balance for a closed system is (notations have their usual meaning) $\Delta E = O - W$.

Ans. (a)

Q. 65. Assertion (A): In thermodynamic analysis, the concept of reversibility is that, a reversible process is the most efficient process.

Reason (R): The energy transfer as heat and work during the forward process, is always identically equal to the energy transfer as heat and work, during the reversal of the process. **Ans.** (a)

- Q. 66. Assertion (A): Pressurized water reactor (PWR) nuclear power plants use superheated steam. Reason (R): An increase in the superheat at constant pressure increases the cycle efficiency. Ans. (d)
- Q. 67. Assertion (A): The air standard efficiency of the diesel cycle decreases as the load is increased. Reason (R): With increase of load, cut-off ratio increases. Ans. (d)
- Q. 68. Assertion (A): Knocking in S.I. engines is due to auto-ignition of the end charge while knocking in C.I. engines is due to auto-ignition of the first charge. Reason (R): Spark ignition engines employ lower compression ratio than diesel engines and the fuel used has a calorific value lower than that of diesel oil. Ans. (b)
- Q. 69. Assertion (A): The C.I. engine is found to be more efficient than an S.I. engine. Reason (R): Modern C.I. engines operate on a dual-cycle, which has an efficiency greater than the Otto cycle.

Ans. (a)

Q. 70. A ship with hull length of 100 m is to run with a speed of 10 m/s. For dynamic similarity. the velocity for a 1:25 model of the ship in a towing tank should be (a) 2 m/s (b) 10 m/s(c) 20 m/s(d) 25 m/s

Ans. (a)

Q. 71. A standard 90° V-notch weir is used to measure discharge. The discharge is Q_1 for a height H_1 above the sill and Q_2 is the discharge for a height H_2 . If H_2/H_1 is 4, then Q_2/Q_1 is (b) $16\sqrt{2}$ (a) 32(c) 16

- Q. 72. A right circular cylinder is filled with a liquid upto its top level. It is rotated about its vertical axis at such a speed that halt the liquid spills out, then the pressure at the point of intersection of the axis and bottom surface is
 - (a) same as before rotation

(b) half of the value before rotation

(c) quarter of the value before rotation

(d) equal to the atmospheric pressure

Ans. (d)

Q. 73. Three immiscible liquids of specific densities ρ , 2ρ and 3p are kept in a jar. The height of the liquids in the jar and at the piezometer fitted to the bottom of the jar are as shown in the given figure. The ratio H/h is

(a) 4(b) 3.5 (c) 3

- Q. 74. Which one of the following sequences indicates the correct order for flue gas flow in the steam power plant layout?
 - (a) superheater, economiser, air preheater
 - (b) economiser, air preheater, superheater

Ans.		ir preheate	er, econ	omiser,	superheat	er (d) economiser, superheater, air preheater						
Q. 75.	Whice (a) the (b) in (c) the (d) the (d)	ne combus nferior gra ne formation ne volume	stion ter ade of co on of N etric hea	nperatu oal can O _x is le	res are hig be used w ss than tha e rates are	nts is <i>not</i> or gher than the ithout slag at in the co	nose in the ging prob nventions n those in	e conve plems al boile n the co	entional rs onventio	boilers	lers	
Q. 76.	give	n below t	he lists	nes) wit	th List-II	(Features)	and sele	ct the	correct	answei	using	the codes
		List-	I (Ma	chines)			List-	II (Fe	atures)			
	A. B. C. D.	Steam en Impulse Reaction Centrifu	turbine turbine	e		1. 2. 3. 4.	Velocit Diagram Continu Isentrop	n factor	essure d			
	Code	es :										
		Α	В	C	D			Α	В	C	D	
	(a)	3	4	2	1		(b)	2	1	3	4	
Ans.	(c) (b)	2	4	3	1	٠	(<i>d</i>)	3	1	2	4	
Q. 77.	Matc give	ch List-I n below t	(Names he lists	s) with	List-II (I	Figures) a	nd select	t the c	orrect a	inswer	using (he codes
		Li	st-I (Na	ımes)				List-	II (Figu	res)		
	A.	Subsonio	c nozzle	;		1.		-				
	В.	Supersor	nic nozz	zle		2.	_	→ E				
	C.	Subsonio	c diffuse	er		3.		-			engliste Programa	6.5
	D.	Centrifu;	gal com	pressor		4.		=			* A .	
						5.		-			tale Names t	
	Code	es:								To a	uli etaki Mate	
		A	В	C	D		415	A	ь	C		
	(a) (c)	3	4 5	2 2	5 4		(b) (d)	1 1	5 4	3	5	
Ans.		, •	_	-	·		(~)	•	•	,	erenden Krenst	

Q. 78. For maximum blade efficiency of a single-stage impulse turbine, the blade speed ratio, (α is the angle made by absolute velocity at inlet) should be

(a) $\cos 2\alpha$

 $(b) \frac{\cos 2\alpha}{2}$

Ans. (c)

Q. 79. The given figure shows the variation of certain steam parameter in case of a simple impulse turbine. The curve A-B-C represents the variation of

(a) pressure in nozzle and blades

(b) velocity in nozzle and blades

(c) temperature in nozzle and blades

(d) enthalpy in nozzle and blades

Ans. (b)

Q. 80. If *n* is the polytropic index of compression and $\frac{p_2}{p_1}$ is the pressure ratio for a three-stage compressor with ideal intercooling, the expression for total work of three stage is

 $(a) \frac{3n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{n-1/n} - 1 \right\}$ $(b) \frac{n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{n-1/3n} - 1 \right\}$ $(c) \frac{n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{n-1/3n} - 1 \right\}$ $(d) \frac{3n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{n-1/3n} - 1 \right\}$

$$(c) \frac{n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{n-1/n} - 1 \right\}$$

$$(d) \frac{3n}{(n-1)} p_1 v_1 \left\{ \left(\frac{p_2}{p_1} \right)^{(n-1)/3n} - 1 \right\}$$

Ans. (d)

Q. 81. The flow in the vaneless space between the impeller exit and diffuser inlet of a centrifugal compressor can be assumed as

(a) free vortex

(b) forced vortex

(c) solid body rotation

Ratio

(d) logarithmic spiral

Ans. (b)

Q. 82. Which of the following statement(s) is/are relevant to critical flow through a steam nozzle? 1. Flow rate through the nozzle is minimum

3. Velocity at the throat is super sonic

2. Flow rate through the nozzle is maximum 4. Velocity at the throat is sonic

Select the correct answer using the codes given below:

Codes:

(a) 1 alone

(b) 1 and 3

(c) 2 and 4

(d) 4 alone

Mass Flow

Ans. (c)

Q. 83. Which portion of the centrifugal compressor characteristics shown in the figure is difficult to obtain experimentally?

(a) RS

(b) ST

(c) TU

(d) UV

Q. 84. Consider the following statements regarding the axial flow in an air compressor:

> 1. Surging is a local phenomenon while stalling affects the entire compressor.

- 2. Stalling is a local phenomenon while surging affects the entire compressor.
- 3. The pressure ratio of an axial compressor stage is smaller than that of a centrifugal compressor stage.

	Of these stateme	ents					
	(a) 1, 2 and 3 are	e correct		(b) I and 2 are corr	rect		
	(c) 2 and 3 are c	orrect		(d) I and 3 are corn			
Ans.	(d)						
Q. 85.	The thermal ef	ficiency of a ga	ıs turbine cyc	ele with regenerati	on in term	s of T_3 (maximum
	temperature), T	(minimum tem	perature), r.	(pressure ratio) an	d k = (C./)	C) is giv	ven bv
	$(a) 1 - \frac{T_1}{T_3} r_p \left(\frac{k}{k-1} \right)$	$\frac{k}{a-1}$ (b) $1-\frac{k}{a}$	$\frac{T_3}{T_1} r_p \left(\frac{k}{k-1}\right)$	$(c) 1 - \frac{T_3}{T_1} r_p \left(\frac{k-1}{k}\right)$	$\left(d\right)$	$1 - \frac{T_1}{T_3} r_p$	$\left(\frac{k-1}{k}\right)$
Ans.							
Q. 86.	1. Francis	2. Kapla	ın	llowing types of to 3. Pelton	urbines :	er Let	
	The sequence of	their specific spe	ed in increasi	ng order is			
Ans.	(a) 1, 2, 3 (b)	(b) 3, 1,	2	(c) 3, 2, 1	(<i>d</i>)	2, 3, 1	
Q. 87.	A symmetrical	stationary vane	experiences	a force 'F' of	V		
	100 N as show	n in the given	figure, when	the mass flow		7 *	
	rate of water ov	ver the vane is 5	kg/s with a	velocity 'V' 20			
	m/s Without Irio	ction. The angle				α	F = 100 N
Ans.	(a) zero	(b) 30°	(c) 45°	(d) 60°		9	
	• •				<i>J</i>		
Ans.	rpm respectively (a) 20%	driving and driving and driving and driving and driving (b) 25%	en shaft is 90	00 rpm and 720 s	(d)	90%	
	 Efficiency inc Neglecting fr At the same i Which of these s (a) 1, 2 and 3 	creases with incre iction the output	ease in speed retorque is equal er slip requires rect?	the fluid coupling atio. I to input torque. higher input torque (c) 2 and 3		1 and 3	
Q. 90.	The level of rui	nner exit is 5 m	above the tai	l race, and atmosp	heric press	ure is 10	3 m The
	pressure at the	exit of the runne	er for a diver	gent draft tube car	i be	uic is io.	J III. THE
	(a) 5 m	(b) 5.3 n		(c) 10 m		10.3 m	
Ans.	(b)						
Q. 91.	Consider the fo	llowing statemen	nts:				
	 helps in reduce provides increase 	evided on the pension the water has eased demand of statements are core (b) 2 and	mmer water rect ?	d to a water turbine 2. stores extra w	ater when r		
Ans.		(<i>v)</i> 2 and	. J	(c) 1 and 2	(a)	i, z and .	5
	• ,	og numn havis-		-66:-i			
	80 kg/s with a l	ig pump naving head of 30 m, th	a mecnanical ne brake powe	efficiency of 80% er of the pump is	delivers' v	vater at th	ne rate of
	(a) 29.4 kW	(b) 20.8		(c) 15.4 kW	(d)	10.8 kW	
Ans.	(a)						

Ans. (a)

Q. 93.		bine is 300 m. The leng The diameter of the poefficient of friction is 0	enstock is 1 m and velo	ocity of water through							
Ans	(a) 310 m	(b) 295 m	(c) 200 m	(d) 150 m							
Ans. Q. 94.	Consider the following 1. The manometric head 2. The suction pipe has, 3. The suction pipe is pr 4. The delivery pipe is pr Of these statements (a) 1, 2, 3 and 4 are correct	is the head developed by generally, a larger diame ovided with a foot valve covided with a foot valve	the pump. ter as compared to the disand a strainer. and a strainer.								
Q. 95. Ans.	For a water turbine, running at constant head and speed, the operating characteristic curves in the given figure show that upto a certain discharge 'q' both output power and efficiency remain zero. The discharge 'q' is required to (a) overcome initial inertia (b) overcome initial friction (c) keep the hydraulic circuit full (d) keep the turbine running at no load (b) Discharge At Constant										
Q. 96.	In fluid machinery, the	relationship between sa	nturation temperature an	Head And Speed d pressure decides the							
Ans.	process of (a) flow separation (c)	(b) turbulent mixing	(c) cavitation	(d) water hammer							
Q. 97.	A centrifugal blower d speed. The new head a		t a heat of H m is driv	en at half the original							
٠	(a) H and $\frac{Q}{2}$	$(b)\frac{H}{4}$ and $\frac{Q}{2}$	$(c)\frac{H}{2}$ and $\frac{Q}{8}$	(d) H and $\frac{Q}{4}$							
Ans.	(b)										
Q. 98. Ans.	The maximum number of (a) 4 (b)	of jets generally employed (b) 6	in an impulse turbine w (c) 8	ithout jet interference is (d) 12							
Q. 99. Ans.	A hydraulic coupling to 2%. If the iraput speed (a) 2 kW										

Q. 100. A plane wall of thickness 2L has a uniform volumetric heat source $q^*(W/m^3)$. It is exposed to local ambie nt temperature T_{∞} at both the ends $(x = \pm L)$. The surface temperature T_s of the wall under stead y-state condition (where h and k have their usual meanings) is given by

(a) $T_s = T_{\infty} + \frac{q^* L}{h}$ (b) $T_s = T_{\infty} + \frac{q^* L^2}{2k}$ (c) $T_s = T_{\infty} + \frac{q^* L^2}{h}$ (d) $T_s = T_{\infty} + \frac{q^* L^3}{2k}$

Q. 101. A flat plate has thickness 5 cm, thermal conductivity 1 W/(mK), convective heat transfer coefficients on its two flat faces of 10 W/(m²K) and 20 W/(m²K). The overall heat transfer co-efficient for such a flat plate is

(a) 5 W/(m^2 K)

(b) $6.33 \text{ W/(m}^2\text{K)}$

(c) $20 \text{ W/(m}^2\text{K)}$

(d) $30 \text{ W/(m}^2\text{K)}$

Ans. (a)

Q. 102. The efficiency of a pin fin with insulated tip is

 $(a) \frac{\tanh mL}{(hA/kP)^{0.5}}$

 $(b) \frac{\tanh mL}{mL}$

 $(c) \frac{mL}{\tanh mL}$

 $(d) \frac{(hA/kP)^{0.5}}{\tanh mL}$

Ans. (b

Q. 103. A cylinder made of a metal of conductivity 40 W/(mK) is to be insulated with a material of conductivity 0.1 W/(mK). If the convective heat transfer coefficient with the ambient atmosphere is 5W/(m²K), the critical radius of insulation is

(a) 2 cm

(b) 4 cm

(c) 8 cm

(d) 50 cm

Ans. (a)

Q. 104. Nusselt number for fully developed turbulent flow in a pipe is given by $N_u = CR_c^a P_r^b$. The values of a and b are

(a) a = 0.5 and b = 0.33 for heating and cooling both

(b) a = 0.5 and b = 0.4 for heating and b = 0.3 for cooling

(c) a = 0.8 and b = 0.4 for heating and b = 0.3 for cooling

(d) a = 0.8 and b = 0.3 for heating and b = 0.4 for cooling

Ans. (*d*)

Q. 105. For natural convective flow over a vertical flat plate as shown in the given figure, the governing differential equation for momentum is

$$V = \frac{u}{U_{\infty}}$$
, $X = \frac{x}{L}$, $y = \frac{y}{L}$ and $\theta = \frac{T - T_{\infty}}{T_x - T_{\infty}}$

then the term $g \beta (T - T_{\infty})$, is equal to

- (a) Grashof number
- (b) Prandtl number
- (c) Rayleigh number

Ans. (c)

Q. 106. The shape factor of a hemispherical body placed on a flat surface with respect to itself is
(a) zero
(b) 0.25
(c) 0.5
(d) 1.0

Ans. (d)

Q. 107. Which one of the following heat exchangers gives parallel straight line pattern of temperature distribution for both cold and hot fluid?

(a) Parallel-flow with unequal heat capacities

(b) Counter-flow with equal heat capacities

(c) Parallel-flow with equal heat capacities

(d) Counter-flow with unequal heat capacities

Ans. (b)

Q. 108. In a counter-flow heat exchanger, the hot fluid is cooled from 110° C to 80° C by a cold fluid which gets heated from 30° C to 60° C. LMTD for the heat exchanger is

(a) 20° C

- (b) 30° C
- (c) 50° C
- (d) 80° C

Ans. (b)

1242							ОВЈЕ	ECTIVE '	TYPE QU	JESTION	S AND AN	SWERS
Q. 109.	and c	old fluid		U is equ	al to 0.		en the effectivenes			xchange	er is	the hot
Ans.	(a) 1. (d)	U		(b) 0	.5		(c) 0.33			(d) 0.2		
		low over	ra flat r	late the	hvdroc	lvna	mic boundary lay	er thicl	kness is	0.5 mn	n. The dy	namic
	visco	sity is 2	25×10^{-1}	⁶ Pa s,	specifi	c he	at is 2.0 kJ/(kg hickness would be	K) and				
Ans.	(a) 0.	.1 mm			.5 mm		(c) 1 mm			(d) 2 n	nm	
	. An e						es 1, 2, 3 and 4 refer to the respec					
	and I	$F_{13} = 0.2$	5. The s	urface a	reas A	and	A_a are 4 m ² and 2	2 m ² res	spective	ly. The	view fac	tor F_{41}
	is			41.0			4 > 0.05				^	
Ans.	(a) 0	.75		(b) 0	.50		(c) 0.25			(d) 0.1	O	
	` '	workin	g temp	erature	s in e	vano	orator and conc	lenser	coils	of a re	frigerat	or are
C ,	- 23°	°C and 2	7° C res	pective	ly. The	CO	P of the refrigera	tor is ().8 of tl			
	a por (a) 4	_	it of 1 l		_	ratio	n effect produce	d will	be	(d) 2.5	: LW	
Ans	` '	K VV		(b) 5	KW		(c) 8 kW			(u) 2.3	, K 44	
	` •	a heat pi	ump wo	rking or	ı vapou	ır co	mpression cycle,	enthal	py valu	es of th	e workin	g fluid
	reject and to pump	tion pro 90 kJ/kg p is, nea	cess, an	d at the tively. T	end o	f ise	the end of com nthalpic expansion ow rate is 0.5 kg	on proc	cess are	195 kJ eating o	I/kg, 210 capacity	kJ/kg,
Ans	(a) i	.5 kW		(b) 4	15 kW		(c) 52.2 l	cw		(d) 60	ĸw	
		ne ton c	apacity	water c	ooler c	ools	water steadily fr	om 35	°C to 2	0° C. T	he specif	ic heat
	of w	ater is 4	1.18 kJ/(kg K).	The wa	ater i	low rate will be					
A	` '	3.33 l/h	r	(b) 3	3.33 l/h	r	(c) 200 l.	/hr		(d) 25	0 l/hr	
	. (c) Moto	sh Liet I	(Dofrie	arant) ,	vith I i	ct II	(Chemical const	ituant)	and ca	lact tha	correct	onewar
Q. 113		g the co	_				(Chemical const	ituent)	and se	icci iiic	conect	answei
		List-I	(Refrige	rant)			List-II (C	Chemico	al const	ituent)		
	A.	R — 12	2			1.	Trichlorotrifluor	ethane	(CCl ₂ F	CClF ₂)		
	В.	R — 22	2			2.	Difluoro monoc	hloro n	nethane	(CHF ₂ C	CI)	
	C.	R — 7				3.	Ammonia (NH ₃)				
	D.	R — 1	13			4.	Difluoro dichlor	o meth	ane (CC	Cl ₂ F ₂)		
	Code	es :										
		Α	В	C	D			Α	В	C	D	
	(a)		2	4	1		(b)	4	2	3	1	
	(c)	3	1	4	2		(d)	4	1	3	2	

Ans. (b)

Q	. 116.	(a) c (b) c (c) t (d) r	lew point t Iry bulb te hermodyna	emperati mperati amic we	iture of ure of the et bulb	imum temper the air at the in te air at the inlatemperature of d dry bulb tem	nlet et Ethe a	ir at the in	let		cooled	is equal	to the		
Q	117.	. Mate	ch List-I (codes give	Expansen belo	sion de w the l	vice) with Listists:	st-II (Operation) and	select t	he corr	ect answe	er using		
			Lis	t-I (Exp	ansion	device)			List-I	l (Opera	ation)				
		A.	Float val	ve			1.	Consta evapora	nt deg	ree of	superh	neat at			
		В.	Automat	ic expa	nsion v	alve	2.	Consta evapora	nt deg	ree of	superh	eat at			
		C.	Internal expansio			thermostatic	3.								
		D.	expansio	ly equ n valve	alized	thermostatic	4.								
		Codes: A B C D A B C D													
		()			_				Α	В	C	D			
		(a) (c)	1	2 4	4 2	3 1		(b)	3	2	4	1	•		
	Ans.		3	7	2	ı		(<i>d</i>)	1	4	2	3			
	Ans.	poss (a) 1 (d)	erature of ible COP 0.0	is	(<i>b</i>) 9		n nas orber	generato temperatu (c) 1.80	or tempers of	peratur 27° C	each, th	en its ma	porator iximum		
	Ans.	(a) 10.0 (b) 9.0 (c) 1.80 (d) 1.50 s. (d) O. Consider the following statements: Subcooling in the condenser of a refrigeration system is advisable when 1. expansion valve is at a higher elevation than condenser 2. there is a large pressure drop in the line connecting condenser to the expansion valve 3. the refrigeration effect is to be increased 4. the compressor work is to be reduced Which of these statements are correct? (a) 1 and 2 (b) 1, 3 and 4 (c) 2, 3 and 4 (d) 1, 2 and 3 s. (c) O. Consider the following statements: When dry bulb and thermodynamic wet bulb temperatures are same; 1. humidity ratio is 100% 2. partial pressure of water vapour equals total pressure 3. air is fully saturated 4. dew point temperature is reached Select the correct statement(s) using the codes given below: Codes: (a) 3 alone (b) 1 and 2 (c) 3 and 4 (d) 1, 2, 3 and 4													
	Ans.	(d)										•			

I.E.S. (Objective)

MECHANICAL ENGINEERING-2001

PAPER - II

					APCI	/ - 11						
is as	n the inte sumed to		_		form in	a flat pivot		g of rad			n force	
(a) r					(c) 2r/3			(d) r/3				
Ans. (c)	Ans. (c)											
						$t - \pi/6$) cm elow the lis		List-I	with L	ist-II and	select	
	List I					List II						
Α.	A. Amplitude (cm)					$5/2\pi$						
В.						1.25						
C.						1/5						
D.	_ · · · · · · · · · · · · · · · · · · ·					$\pi/6$						
Code	•	, ,										
	Α	В	С	D			Α	В	С	D		
(a)		1		3		(b)	2	3	4	1		
(c)		3	2 2	1		(d)	2	1	4	3		
Ans. (b)												
	ch of the	followi	ing pair	rs of dev	ices ar	d their func	tions ar	e corre	etly ma	tched ?		
Q. 3. Which of the following pairs of devices and their functions are correctly matched? 1. Flywheel For storing kinetic energy												
	2. Governors					For controlling speeds						
3. Le	3. Lead screw in lathe					For providing feed to the slides						
4. Fixtures						For locating workpiece and guiding tools						
Sele Cod e		ect ansv	ver usir	ng the coo	des give	en below:						
	(a) 1, 3 and 4			2 and 3		(c) 1 an	(d) 2 and 4					
Ans. (c)	• ,						` ,					
	ch List-I ations ha					rect answer	using th	e codes	given	below the	e Lists.	
	List I						List II					
Α.	A. Law of correct steering						1. $f = 3(n-1) - 2j$ 2. $x = R \left[(1 - \cos \theta) + \frac{\sin^2 \theta}{2n} \right]$					
В.	B. Displacement relation of Hook's joint					2. x	=R (1	- cos θ	$+\frac{\sin^2}{2n}$	$\frac{\mathbf{\theta}}{\mathbf{\theta}}$		
C.	C. Relation between kinematic pairs and links 3. $\cot \phi - \cot \theta = c/b$											
D.												
Code	es :											
	Α	В	С	D			Α	В	С	D		
(a)		4	3	2		(b)	1	2	3	4		
(c)		4	1	2		(d)	3	2	1	4		

Ans. (c)

Q. 5. Force required to accelerate a cylindrical body which rolls without slipping	on a horizontal
plane (mass of cylindrical body is m , radius of the cylindrical surface in co	ntact with plane
is r , radius of gyration of body is k and acceleration of the body is a) is	•

(a) $m(k^2/r^2+1)$. a (b) (mk^2/r^2) . a (c) mk^2 . a

(d) $(mk^2/r+1)$, a

Ans. (a)

- Q. 6. Consider the following statements regarding motions in machines:
 - 1. Tangential acceleration is a function of angular velocity and the radial acceleration is a function of angular acceleration.
 - 2. The resultant acceleration of a point A with respect to a point B on a rotating link is perpendicular to AB.
 - 3. The direction of the relative velocity of a point A with respect to a point B on a rotating link is perpendicular to AB.

Which of these statements is/are correct?

(a) I alone

(b) 2 and 3

(c) 1 and 2

(d) 3 alone

Ans. (*d*)

Q. 7. Consider the following statements:

In petrol engine mechanism, the piston is at its dead centre position when piston

1. acceleration is zero

2. acceleration is maximum

3. velocity is zero

4. velocity is infinity

Which of these statements are correct?

(a) 1 and 4

(b) 1 and 3

(c) 2 and 3

(d) 2 and 4

Ans. (c)

Q. 8. The speed of driving shaft of a Hooke's joint of angle 19.5° (given $\sin 19.5^{\circ} = .33$. cos 19.5° = .94) is 500 r.p.m. The maximum speed of the driven shaft is nearly

(a) 168 r.p.m.

(b) 444 r.p.m.

(c) 471 r.p.m.

(d) 531 r.p.m.

Ans. (d)

Q. 9. The given figure shows the Klein's construction for acceleration of the slider-crank mechanism

> Which one of the following quadrilaterals represents the required acceleration diagram?

(a) ORST

(b) OPST

(c) ORWT

(d) ORPT

 \mathbf{Q} . 10. The spigot of a cotter joint has a diameter of D and carries a slot for cotter. The permissible crushing stress is x times the permissible tensile stress for the material of spigot where x > 1. The joint carries an axial load P. Which one of the following equations will give the diameter of the spigot?

(a)
$$D = 2\sqrt{\frac{P}{\pi\sigma_t} \frac{x-1}{x}}$$

(c) $D = \frac{2}{\pi} \sqrt{\frac{P}{\sigma_t} \frac{x+1}{x}}$

(b)
$$D = 2\sqrt{\frac{P}{\pi\sigma_t}} \frac{x+1}{x}$$

(c)
$$D = \frac{2}{\pi} \sqrt{\frac{P}{\sigma}} \frac{x+1}{x}$$

$$(d) D = \frac{2 P}{\pi \sigma_t} \sqrt{x + 1}$$

Ans. (b)

Q. 11. The screw and nut in a broaching machine are changed from square thread to Acme thread. The power requirement of the machine at the same r.p.m. will

(a) remain same

(b) decrease

(c) increase

(d) depend on the operator

Ans. (c)

246								ОВ	JECTIVE	TYPE (QUESTIO	NS AND AN	SWERS
Q. 12. Ans.	The creep in a belt drive is due to the (a) material of the pulleys (c) unequal size of the pulleys (d) The designation 6×7 of a wire rope m						(b) material of the belt(d) unequal tension on tight and slack sides of the belt						
	The (a) 6	designat 5 wires	ion 6×		wire rope n 7 wires	neans	(<i>c</i>	·) 13 w	ires		(d) 42	2 wires	
Q. 14.	= 10	ervomoto): 1) to a t side is	r is cor load h	nected aving 1	through a noment of	gear ra inertia	itio J. T	of 10 The ec	(i.e., r Juivaler	notor : it para	speed :	load side eferred to	speed
	(a) J	$I_{eq} = 0.01$	J	(b).	$J_{eq} = 10 J$		(c	$J_{ea} =$	0.1 <i>J</i>		$(d) J_{\mu}$	$a_a = 100 J$	
Ans.	(a)	•			•							ч	
Q. 15.	Mate	ch List-I	with List	-II and	select the co	orrect ar	nsw	er usin	g the co	odes gi	ven belo	w the lists	:
				st-I					List-				
	Α.	Cam an	d follow				1.	Grui	bler's ru				
	В.	Screw p		0.			2.		shof's li				
	C.	-	echanisı	n			3.		sure ang	_			
	D.	Degree	of freed	om of p	lanar mecha	nism	4.		le degre	_	eedom		
	Cod			•					,				
		Α	В	C	D				Α	В	С	D	
	(a)		4	2	D I			(b)	1	2	4	3	
	(c)	1	4	2	3			(d)	3	2	4	1	
Ans.	(a)												
Q. 16.		sider the											
					the clearan								
	1. di	ifference l	between	dedend	um of one g	ear and	add	lendun	n of the	mating	gear.		
					nd the working the main of the					f tha m	atina aa		
	4. di	ifference l	between	the rad	ii of the base	e circle :	anu and	the de	o ianu o dendum	i ine m Lircle	ating ge	ar.	
	Whi	ch of thes	se statem	ents ar	e correct?	one ie		me de	dendun	· ciicic	•		
		1, 2 and 3			2, 3 and 4		(c) 1, 3 a	and 4		(d) 1,	2 and 4	
Ans.	(<i>d</i>)												
Q. 17.	A b	ody of ma	ass <i>m</i> an	d radiu	s of gyratior	k is to	be	replac	ed by t	wo ma	sses m ₁	and m_2 loc	ated a
	dista	ances h_1 and	$nd h_2$ from	m the	CG of the or	riginal t	ody	. An c	equivale	nt dyna	mic sys	tem will re	sult, i
		$h_1 + h_2 = k$			$h_1^2 + h_2^2 = k^2$			h_1h_2				$\overline{h_1 h_2} = k^2$	
Ans.	(c)												
Q. 18.	Mate	ch List-I v	with List	-II and	select the co	orrect ar	nswe	er usin	g the co	odes gi	ven belo	w the lists	:
			ist-I						List-II	Ü			
	A.	Underci				1.	Þ		trength				
	В.	Addend	_			2.		nterfer	-				
	C.	Lewis e				3.			peed rec	luction			
	D.		and whee	el		4.			ting axe				
						5.		1odule	-				

Codes:

	Α.	D	_	-					•
		· B				Α	В	C	D
(a)	2	5	1	2					
					(b)	1	5	4	3
(c)	1	3	4	5				1	
				•	(a)	4	3	1	3

Ans. (a)

Q. 19. The natural frequency of transverse vibration of a massless beam of length L having a mass m attached at its midspan is given by (EI) is the flexural rigidity of the beam)

(a)
$$\left(\frac{mL^3}{48EI}\right)^{\frac{1}{2}}$$
 rad/s (b) $\left(\frac{48mL^3}{EI}\right)^{\frac{1}{2}}$ rad/s (c) $\left(\frac{48EI}{mL^3}\right)^{\frac{1}{2}}$ rad/s (d) $\left(\frac{3EI}{mL^3}\right)^{\frac{1}{2}}$ rad/s

Q. 20. A ball-bearing is characterized by basic static capacity = 11000 N and dynamic capacity = 18000 N. This bearing is subjected to equivalent static load = 5500 N. The bearing loading ratio and life in million revolutions respectively are

(a) 3.27 and 52.0 (b) 3.27 and 35.0 (c) 2.00 and 10.1 (d) 1.60 and 4.1

Q. 21. Match List-I with List-II and select the correct answer using the codes given below the lists:

				-6	0000 51	ven bere	W the ns				
	Lis	List-II									
Α.	6 d.o.f.	system			1.	Vibrati	ng bean	n			
В.	l d.o.f.	-			2. Vibration absorber						
C.	2 d.o.f. s	system			3.	A rigid	body ir	space			
D.	Multi d.	o.f. syst	em		4. Pure rolling of a cylinder						
Code	es :							• y			
	Α	В	C	D			Α	В	С	D	
(a)	1	2	4	3		(<i>b</i>)	ı	4	2	3	
(c)	3	2	4	1		(d)	3	4	2	1	
Ans. (<i>a</i>)						, ,			_	•	

Q. 22. A shaft carries a weight W at the centre. The CG of the weight is displaced by an amount e from the axis of the rotation. If y is the additional displacement of the CG from the axis of rotation due to the centrifugal force, then the ratio of y to e (where ω_c is the critical speed of shaft and ω is the angular speed of shaft) is given by

$$(a) \frac{1}{\left[\frac{\omega_c}{\omega}\right]^2 + 1} \qquad (b) \frac{1}{\left[\frac{\omega_c}{\omega}\right]^2 - 1} \qquad (c) \left[\frac{\omega_c}{\omega}\right]^2 + 1 \qquad (d) \frac{\omega}{\left[\frac{\omega_c}{\omega}\right]^2 - 1}$$

Ans. (b)

- Q. 23. In a simple gear train, if the number of idler gears is odd, then the direction of motion of driven gear will
 - (a) be same as that of the driving gear
 - (b) be opposite to that of the driving gear
 - (c) depend upon the number of teeth on the driving gear
 - (d) depend upon the total number of teeth on all gears of the train

Ans. (a)

Ans.	the r (a) m o (b) sq (c) sq (d) ac (a)	esona nass of the peed of peed of mplitu	nt con of the rough of the of the	ndition: vehicle ness cr vehicle vehicle the ur	s of the, stiffurve le onlindication	he base exfiness of t y the stiffrations	xcited he sus ness of	ose undulations, a pension sprii	re dete ng, spe ion spr	rmined ed of t ing	by the		
Q. 25.		_		vibrati gular v			ne noc	de is characte (b) maximu			dacemei	n f	
				gular a		•		(d) zero ang	_	-			
Ans.				guiai a				(11) 2010 4112	,		••••		
	Matc			Bearing low the			(Appl	ications) and	select	the co	rrect ai	iswer u	ising the
			Li	st I					L	ist II			
	A.	Cyli	ndrica	l roller			1.	Radial loads	s				
	В.	-	-beari				2.	Machine ne assembling	eds frec	quent di	smantlii	ng and	
	C.	Tape	er rolli	ing bea	ring		3.	Radial load	s with le	esser th	rust		
	D.	Ang	ular c	ontact b	all-be	aring	4.	Shock loads	;				
							5.	Axial expansion of shaft due to rise in temperature					
	Code	es:											
		A	4	В	C	D			Α	В	C	D	
	(a)		4	3	1	5		(<i>b</i>)	1	3	2	5	
	(c)	4	4	ł	2	3		(d)	5	4	1	3	
Ans.													
Q. 27.	(a) u	ınit ste	ep disp	iscous placem		ed output	t. Ther	e is no stead (b) step vel	ocity	_	-		
Ans.		armoi	nic					(d) step vel	ocity w	ith erro	r-rate da	mping	
	` '		,			6.200				c c			1.40
Q. 28.	Whe	n the	outer		has to	turned thr	ough 3	I the pivot d 30°, the angle	e of tui				
	(a) 6	60°			(b)	$\cot^{-1} 2.23$		$(c) \cot^{-1}$	1.23		(a) 30)°	
Ans.	. (c)												
Q. 29.				Propert e lists		ith List-I	I (Uni	ts) and selec	t the c	orrect	answer	using t	he codes
			L	ist I				List II				•	

1. Pa m^2/s

2.

3.

4.

5.

 Ns/m^2

Nm

N/m

Dynamic viscosity

Kinematic viscosity

Torsional stiffness

Modulus of rigidity

B.

C.

D.

Codes:

		В			4	Α	В	С	D
(a)	3	2	4	i			2		
(c)	3	4	2	3			4		
(4)					(47)	5	4	2	1

Ans. (a)

Q. 30. In a multi-plate clutch with n_o number of outer discs and n_i number of inner discs, the number of pairs of active surfaces is

(a) $n_i + n_{\alpha}$ (b) $n_i + n_o + 1$

(c) $n_i + n_a - 1$

(d) $n_i + n_o - 2$

Ans. (c)

Q. 31. A full journal bearing having clearance to radius ratio of 1/100, using a lubricant with $\mu = 28 \times 10^{-3}$ Pa s supports the shaft journal running at N = 2400 r.p.m. If bearing pressure is 1.4 MPa, the Sommerfeld number is

(a) 8×10^{-3}

(b) 8×10^{-5}

(c) 0.48

 $(d) 0.48 \times 10$

Ans. (a)

- Q. 32. A sliding contact bearing is operating under stable condition. The pressure developed in oil film is p when the journal rotates at N r.p.m. The dynamic viscosity of lubricant is μ and effective coefficient of friction between bearing and journal of diameter D is f. Which one of the following statements is correct for the bearing?
 - (a) f is directly proportional to μ and p
 - (b) f is directly proportional to μ and N
 - (c) f is inversely proportional to p and D
 - (d) f is directly proportional to μ and inversely proportional to N

Ans. (*b*)

- Q. 33. In a slider-crank mechanism, the maximum acceleration of slider is obtained when the crank is
 - (a) at the inner dead centre position
 - (b) at the outer dead centre position
 - (c) exactly midway position between the two dead centres
 - (d) slightly in advance of the midway position between the two dead centres

Ans. (b)

Direction: The following thirteen (13) items consist of two statements, one labelled the 'Assertion (A)' and the other labelled the 'Reason (R)'. You are to examine these two statements carefully and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the Reason is a correct explanation of the Assertion. Select your answers to these items using the codes given below and mark your Answer Sheet accordingly.

Codes:

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q. 34. Assertion (A): There is a danger of locomotive wheels being lifted above rails at certain

Reason (R): Lifting of the locomotive wheel above rails at certain speed is due to gyroscopic action.

Ans. (c)

Q. 35. Assertion (A): A statically and dynamically balanced system of multiple rotors on a shaft can rotate smoothly even at the 'critical speeds' of the system.

Reason (R): Total balancing eliminates all the 'in plane' and 'out of plane' unbalanced forces of the system.

Ans. (d)

Q. 36. Assertion (A): Inertia force always acts through the centroid of the body and is directed opposite to the acceleration of the centroid.

Reason (R): It has always a tendency to retard the motion.

Ans. (a)

Q. 37. Assertion (A): The supply of fuel is automatically regulated by governor according to the engine speed.

Reason (R): The automatic function is the application of d' Alembert's principle.

Ans. (c)

Q. 38. Assertion (A): For similar materials having the same maximum permissible tension V-belt transmits more power than flat belt with same velocity ratio and centre distance.

Reason (R): As two sides of V-belt are in contact with side faces of pulley groove, larger contact area gives greater effective frictional force.

Ans. (a)

Q. 39. Assertion (A): In design of arms of a pulley, in belt drive, the cross-section of the arm is elliptical with minor axis placed along the plane of rotation.

Reason (R): Arms of a pulley in belt drive are subjected to complete reversal of stresses and is designed for bending in the plane of rotation.

Ans. (d)

Q. 40. Assertion (A): In a boiler shell with riveted construction, the longitudinal seam is jointed by butt joint.

Reason (R): A butt joint is stronger than a lap joint in a riveted construction.

Ans. (c)

Q. 41. Assertion (A): Diamond tools can be used at high speeds.

Reason (R): Diamond tools have very low coefficient of friction.

Ans. (c)

Q. 42. Assertion (A): Hard wheels are chosen for grinding hard metals.
Reason (R): In hard wheels only the abrasive grains are retained for long time.

Ans. (d)

Q. 43. Assertion (A): Buttress thread is a modified square thread profile which is employed on the lead screw of machine tools.

Reason (R): Frequent engagement and disengagement of lead screw for automatic feed is not possible with perfect square threads, therefore, the square profile has to be modified.

Ans. (a)

Q. 44. Assertion (A): No separate feed motion is required during broaching.

Reason (R): The broaching machines are generally hydraulically operated.

Ans. (b)

Q. 45. Assertion (A): In Dodge Romig sampling tables, the screening inspection of rejected lots is also included.

Reason (R): Dodge Romig plans are indexed at an LTPD of 10 per cent.

Ans. (c)

Q. 46.	. Asse med	<i>rtion (A)</i> ium and sl	: Time	serie	s analysi recasting	s techi	nique of sal	es-fore	casting	can be	applie	d to only
Ans.	Reas (a)	on (R) : Q	ualitati	ve inf	formation	about	the market i	is neces	sary for	r long-r	ange fo	recasting.
Q. 47.	In pi	roduction, ne shop flo	plannii oor is t	ig and	l control,	the do	cument whi	ch auth	norizes	the star	t of an	operation
Ans.		Dispatch ord	der	(b)	Route pla	ın	(c) Loa	ding ch	art	(d) S	chedule	:
Q. 48.	was level	and ± 5%	on 40 (observ	ations. T	f a mad	chine, out of random ob	f 100 ra servatio	ndom o ons requ	bservat ired for	tions the	machine onfidence
Ans.	(a) 3	84		(b)	600		(c) 240	0		(d) 9	600	
		nroces e		 :	_							
Q. 45.		process conspection as			5							
		spection, o			transport	ation						
	(c) in	spection, o	peratio	n, tran	sportation	n and d	ealy					
_	(<i>d</i>) ir	spection, c	peratio	n, trar	rsportatio	n, delay	and storage	:				
Ans.												
Ans.	prode 220 : (a) 5	ing time fourth	or each 50, for	prod B is	uct is 20 360 and r of weld	s, 40 s for <i>C</i>	the welding and 50 s resis 240. A wees required (c) 3	espective elding	elv. Da	ilv den	nand fo	recast for
Ans.	Control 1. bas 2. con 3. nur Whice (a) 1,	ider the for rol chart of sic variabil insistency of mber of proch of these said and 3	variable ity of the f perfore oducts f	es pro ne qua manco alling nts are	vides the lity charace. e. outside the	cteristic he toler	c. ance limits. (c) 2 and	d 3		(d) 1	and 3	
	` '	h Line I //	OD 45.51	•								
Q. 32.	codes	n List-i (t s given be	low the	nnique Lists	e) with L	.ist-II ((Model) and	i seleci	the co	orrect a	nswer (using the
		Li	ist I				L	ist II				
	A. B. C. D.	Branch an Expected Smoothing Exponenti	value apgrand L	oproac evelli	ch ng	1. 2. 3. 4.	PERT and Integer pro Queuing th Decision th	gramm eory	ing			
	Code	s :										
	, .	A	В	C	D			Α	В	С	D	
	(a) (c)	2.3	1 4	4	3 2		(b)	2	4	1	3	
Ans.		3	4	1	2		(d) ₁	5	1	4	2	
Z BEEG.	(11)							٠.				

Ans. (a)

Q. 53.	Matc	h List-I w	ith List-	II and	select the co	orrect ans	wer using	g the c	odes giv	en belo	w the L	ists :
							List I	1				
	A.	Decision	making	g under	complete co	ertainty	1.	Delp	hi appro	oach		
	В.	Decision					2.	_	imax cri			
	C.	Decision	making	under	complete ui	ncertainty	3.	Tran	sportati	on mode	el	
	D.	Decision	making	based	on expert o	pinion	4.		sion tre			
	Code	s:				•						
		A	В	С	D			Α	В	С	D	
	(a)	3	4	1	2		(b)	4	-3	2	l	
	(c)	3	4	2	1		(<i>d</i>)	4	3	1	2	
Ans.	(c)											
Q. 54. Ans.	(a) b	ng manufa elt convey			ent, the har bucket conve					(<i>d</i>) fo	rk-lift c	rane
(,	1. D 2. V ea 3. V S	Oual of a of When two qual, dege of When an a implex tact the correct than the correct	dual is minimu eneracy rtificial bles.	the pr um rati may i variat	ements regatimal. ios of the ritake place. ole leaves the manual the codes	ght-hand e basis, i	side to	the co	efficien			
Ans.	(a) 1	, 2 and 3		(b)	1 and 2	,	(c) 2 and	13		(<i>d</i>) 1	and 3	
Q. 56.	(a) la (b) ea (c) la (d) ea	itest occur arliest occ itest occur	rence ti urrence rence ti	me of t time f me of t	vity in CPM the successor or the predection the predection the predection the predection that the predection is a successor to the predection that	r event m cessor eve r event	ent plus t					
	pecte (a) 2 (c) 30				e given figure e project is (b) 27 days (d) indeterr		iest ex-	5 A	B - 4	<u> </u>	E 1	8 0 H
Ans. Q. 58.	Arriv cordi of 10 lengt	ing to Po D minutes th of a pl probabilit	isson d betweenone ca	istribu en one ill is a	th are consition, with a e arrival and assumed to on arriving	n averagd the new be distribat the	e time at. The outed ex	ponent have (ially w	7 ith mea		/10) minutes
	(") I	0		(0)	10	'	° 30			(4) 3()	

5.

Therbligs

1254

Codes:

	Α	В	C	D	•	Α	В	C	D
(a)	4	3	1	2	(b)	1	2	4	5
			4		(<i>d</i>)	4	2	l	5

Ans. (b)

Q. 65. If α is the rake angle of the cutting tool, ϕ is the shear angle and V is the cutting velocity. then the velocity of chip sliding along the shear plane is given by

(a)
$$\frac{V\cos\alpha}{\cos(\phi-\alpha)}$$
 (b) $\frac{V\sin\alpha}{\cos(\phi-\alpha)}$ (c) $\frac{V\cos\alpha}{\sin(\phi-\alpha)}$ (d) $\frac{V\sin\alpha}{\sin(\phi-\alpha)}$

Ans. (a)

Q. 66. Match List-I (Cutting Tools) with List-II (Applications) and select the correct answer using

the codes given below the lists: List II List I Trepanning tool For surface finishing by honing A. For machining gears 2. B. Side milling cutter C. Hob cutter 3. For cutting keyways in shafts For drilling large diameter holes Abrasive sticks D. Codes: 3 2 (a) (d) (c) Q. 67. Dry and compressed air is used as cutting fluid for machining

(a) steel

(b) aluminium

(c) cast iron

(d) brass

Ans. (c)

Q. 68. For cutting of brass with single-point cutting tool on a lathe, tool should have

(a) negative rake angle

(b) positive rake angle

(c) zero rake anlge

(d) zero side relief angle

Ans. (c)

Q. 69. Power consumption in metal cutting is mainly due to

(a) tangential component of the force

(b) longitudinal component of the force

(c) normal component of the force

(d) friction at the metal-tool interface

Ans. (a)

O. 70. In a shaper machine, the mechanism for tool feed is

(a) Geneva mechanism

(b) Whitworth mechanism

(c) Ratchet and Pawl mechanism

(d) Ward- Leonard system

Ans. (c)

Q. 71. Match List-I (Components) with List-II (Manufacturing Processes) and select the correct answer using the codes given below the lists:

List I

List II

Car body (metal)

Machining

В. Clutch lining 2. Casting

C. Gears

Sheetmetal pressing 3.

D. Engine block Powder metallurgy

	Codes :												1233
		Α	В	C	D				Α	В	С	D	
	(a)	3	4	2	1			(b)	4	3	ı	D 2	
	(c)	4	3	2	1			(d)	3	4	1	2	
	$\cdot \cdot (d)$												
Q. 72	. The ma	rking c	n a gri	nding	wheel is	51 A	36 L 5	5 V 9	3'. The	code	'36' rep	resents f	the
	(a) struc • (c)	ture		(b) g	grade		' (c)	grain	- size	(d) manufa	acturer's	number
		i											
Q. 13	In the factor (a) draw	out the	operation materia	on, Iul al <i>(h</i>	lering is	done to	0 ial (a)		Al.				
Ans	. (a)		··········	41 (12) ocha ti	ic materi	iai (C)	upset	ine ma	teriai	(d) ext	rude the	material
Q. 74	. The mai	in purp	ose of	chaple	ts is								
	(a) to en	sure di	rectiona	l solidi	fication		(b) to	provi	de effic	ient ver	ntina		
	(c) for al								ort the c		ung		
Ans								• •					
Q. 75	Scab is												
Ans	(a) sand	casting	defect	(<i>b</i>) n	nachinin	g defect	(c)	weldi	ng defe	ct	(<i>d</i>) for	ging defe	ec
							,						
Q. 70	Specific (a) grind	cutting ing (cu	g energy	y is m	ore in g	rinding	proces	s con	pared	to turni	ing beca	iuse	
	(b) the w	/heel ha	ung) sp is multir	de cut	nigner ing odoc	v Carnin	\						
	(c) ploug	shing fo	orce is si	gnifica	ant due to	o small c	s <i>)</i> :hin siz	·c					
	(d) grind	ing wh	eel unde	rgoes	continuo	us wear							
Ans													
Q. 77.	The may	cimum	heat in	resista	ance we	lding is	at the						
	(a) tip of						(<i>b</i>) tip	of the	e negati	ve elec	trode		
	(c) top su (d) interf	irrace o ace bet	i the pla	ite at ti	he time (of electri	c conta	ict wit	h the el	ectrode			
Ans.	(d)	ace net	ween in	e two p	piates be	ing joine	ea						
	Arc blow	v is mo	ore com	mon i	n .								
	(a) a.c. w			•	••		(b) d c	welc	ling wit	h straig	ht polar	i.,,	
	(c) d.c. w	elding	with bar	e eleci	trodes		(d) a.c	. welc	ling wit	h bare o	electrodo	1ty 28	
Ans.									•				
	Pinch ef					of							
	(a) expan			n the a	rc				agnetic				
Ans.	(c) electr	ic force					(d) sur	face t	ension (of the n	nolten m	etal	
		d ama		d.									
Q. 00.	In manua (a) voltag	n arc w re consi	eiding, tant who	ine eq	uipment	should	have di	roopii	ng chara	acterist	ics in or	der to m	aintain
	(c) tempe					anges	(1) cui	ireni c	onstant of red-he	wnen a	irc lengi	h change	es .
Ans.			,				(u) we	iu poc	n ica-in	Ol			
Q. 81.	In arc we	elding,	d.c. rev	erse r	oolarity	is used	to bear	r grea	ter adv	antage	in		
	(a) overh	ead wel	lding	,	,				ing of l				
	(c) edge v	welding							ing of b				
Ans.	(<i>b</i>)								•	-			

	Winch of the following	g assumptions are cor	rect for cold rolling?	
	1. The material is plas			
			us greater than the radius	
	3. Coefficient of frict throughout the arc		the arc of contact and	acts in one direction
	Select the correct answer	r using the codes given	below:	
	Codes:			
	(a) 1 and 2	(b) 1 and 3	(c) 2 and 3	(d) 1, 2 and 3
Ans.	(c)			
Q. 83.	A strip is to be rolled	from a thickness of	30 mm to 15 mm using a	two-high mill having
			f friction for unaided bite	should nearly be
	(a) 0.35	(b) 0.5	(c) 0.25	(d) 0.07
Ans.	(c)			
Q. 84.			alient features of hydrosta	tic extrusion?
	1. It is suitable for so			
	2. It is suitable for hig			
	3. The billet is inserted the billet through the		amber and pressure is appl	ied by a ram to extrude
			amber where it is surround	
			applying pressure to the	liquid.
	Select the correct answe	r using the codes giver	below:	
	Codes:	(1) 1 1 4	() 0	(5 2 - 1 4
	(a) 1 and 3	(b) 1 and 4	(c) 2 and 3	(d) 2 and 4
A 200.7				
Ans.	• •	*.	a	
	The spindle speed range		the is divided into steps whi	ch approximately follow
	The spindle speed range (a) arithmetic progression	on	(b) geometric progression	
Q. 85.	The spindle speed range (a) arithmetic progression (c) harmonic progression	on		
Q. 85. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b)	on n	(b) geometric progression (d) logarithmic progression	1
Q. 85. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu	on n	(b) geometric progression(d) logarithmic progressione automatic lathe is done	using
Q. 85. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism	on n rret in a single-spindl	(b) geometric progression(d) logarithmic progressione automatic lathe is done(b) Ratchet and Pawl mech	using nanism
Q. 85. Ans. Q. 86.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mechanism	on n rret in a single-spindl	(b) geometric progression(d) logarithmic progressione automatic lathe is done	using nanism
Q. 85. Ans. Q. 86.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mechanism (a)	on n rret in a single-spindl chanism	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism 	using nanism
Q. 85. Ans. Q. 86.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s	on n rret in a single-spindl chanism aturated solution of c	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mechanism arbon in 	n using nanism
Q. 85. Ans. Q. 86.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron	on n rret in a single-spindl chanism	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism 	using nanism
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mechanism (a) Martensite is a super-s (a) alpha iron (a)	on rret in a single-spindle chanism aturated solution of c (b) beta iron	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron 	using nanism (d) delta iron
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow	on rret in a single-spindle chanism aturated solution of c (b) beta iron	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron 	using nanism (d) delta iron
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam	on rret in a single-spindle chanism aturated solution of c (b) beta iron	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mechanism (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping eler (b) Cam and Toggle 	using hanism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge	on rret in a single-spindle chanism aturated solution of c (b) beta iron	 (b) geometric progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron 	using hanism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a)	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements at	(b) geometric progression (d) logarithmic progression (e) automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping cler (b) Cam and Toggle (d) Wedge, Cam and Togg	using manism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a) The correct sequence of	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements are	(b) geometric progression (d) logarithmic progression (e) automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping eler (b) Cam and Toggle (d) Wedge. Cam and Togg in a creep curve in order	using manism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a)	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements are consisted to the constant of the consta	(b) geometric progression (d) logarithmic progression (e) automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping cler (b) Cam and Toggle (d) Wedge, Cam and Togg	using hanism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88.	The spindle speed range (a) arithmetic progression (c) harmonic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a) The correct sequence of (a) steady state, transien (c) transient, accelerated	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements are consisted to the constant of the consta	(b) geometric progression (d) logarithmic progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping eler (b) Cam and Toggle (d) Wedge, Cam and Togg in a creep curve in order (b) transient, steady state,	using hanism (d) delta iron ments for fixtures?
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88. Ans. Ans. Ans.	The spindle speed range (a) arithmetic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a) The correct sequence (a) steady state, transien (c) transient, accelerated (a)	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements are of creep deformation at, accelerated d, steady state	(b) geometric progression (d) logarithmic progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping eler (b) Cam and Toggle (d) Wedge. Cam and Togg in a creep curve in order (b) transient, steady state, a (d) accelerated, steady state	using manism (d) delta iron ments for fixtures? de of their elongation is accelerated e, transient
Q. 85. Ans. Q. 86. Ans. Q. 87. Ans. Q. 88. Ans. Ans. Ans.	The spindle speed range (a) arithmetic progression (b) The indexing of the tu (a) Geneva mechanism (c) Rack and pinion mec (a) Martensite is a super-s (a) alpha iron (a) Which one of the follow (a) Wedge and Cam (c) Toggle and Wedge (a) The correct sequence (a) steady state, transien (c) transient, accelerated (a)	on rret in a single-spindle chanism aturated solution of c (b) beta iron ving sets of elements are of creep deformation at, accelerated d, steady state	(b) geometric progression (d) logarithmic progression (d) logarithmic progression e automatic lathe is done (b) Ratchet and Pawl mech (d) Whitworth mechanism arbon in (c) gamma iron re quickacting clamping eler (b) Cam and Toggle (d) Wedge, Cam and Togg in a creep curve in order (b) transient, steady state,	using manism (d) delta iron ments for fixtures? de of their elongation is accelerated e, transient

Q. 91	maximum stress, indu	ced in a thin cylindric	ness, material and interna- cal and in a thin spherical	nl pressure, the ratio o pressure vessel will be
Ans	(a) 2	(b) 1/2	(c) 4	(d) 1/4
Q. 92.	(a) Manganese	(b) Phosphorus	e grey east iron by adding (c) Magnesium	a small amount of (d) Chromium
				•
Q. 93.	a, D and N respective	y and stiffness of the ameter, mean coil dia	mber of turns of a closely e spring is K. A second s meter and number of turn (c) 4K	pring is made of same
Ans	. (a)			()
Q. 94.	resents the tetragonal	crystal system?	engths (a, b, c) and interax	
	(a) $a = b = c$; $\alpha = \beta = \gamma$		(b) $a = b \neq c$; $\alpha = \beta = \gamma =$	
A	(c) $\alpha \neq b \neq c$; $\alpha = \beta = \gamma$	= 90°	(d) $a = b = c$; $\alpha = \beta = \gamma \neq$	90°
Ans.				
Q. 95.	Consider the following 1. Oil	quenching media: 2. Water	3. Water + NaOH	4. Brine
,	treatment is	of these media in orde	er of increasing hardness of	of steel undergoing heat
	(a) 1, 3, 2, 4	(b) 2, 1, 3, 4	(c) 1, 2, 3, 4	(d) 4, 3, 2, 1
Ans.				
Q. 96.	Two identical springs shown in the given fig	gure	re arranged in series and	subjected to force F as
			F	
	Assume that each spring	g constant is K. The stra	ain energy stored in spring	lie
	$(a) \frac{F^2}{2K}$	F^2		
	21	$(b) \frac{F^2}{4K}$	$(c)\frac{F^2}{8K}$	$(d)\frac{F^2}{16K}$
Ans.	(b)			ION
Q. 97.	A rod having cross-sectifailure criterion, if the u (a) 10 kN	onal area 100×10^{-6} m niaxial yield stress of the (b) 20 kN	1 ² is subjected to a tensile long the material is 200 MPa, the (c) 100 kN	failure load is
Ans.		(v) 20 KI	(c) foo kiy	(d) 200 kN
Q. 98.	If diameter of a long coload is	olumn is reduced by 20	0%, the percentage of redu	ction in Euler buckling
	(a) 4	(b) 36	(c) 49	(d) 59
Ans.	(d)			(a) 57
	With one fixed end an column of same length ratio of P_2/P_1 is	d other free end, a c a and same cross-sect	olumn of length L buckle ion fixed at both ends by	es at load P_1 . Another ackles at load P_2 . The
	(a) 1	(b) 2	(c) 4	(d) 16
Ans.	(d)		•	
,				

Q.	100.	In a	tw	o-dime	nsional	probler	n, th	e stat	e of pur	e shea	r at a	a point is c	haracteriz	ed by	y	
		(a) 8	ε _x =	ϵ_y and ϵ_y	$y_{xy} = 0$	(b) ε_x	=-	$\mathbf{\varepsilon}_{_{V}}$ and	$\gamma_{xy} \neq 0$	$(c) \mathbf{\epsilon}_{\mathbf{v}}$	$=2\varepsilon_{y}$	and $\gamma_{xy} \neq 0$	(d) $\varepsilon_x =$	$0.5\epsilon_{\rm y}$	and $\gamma_{xy} = 0$	()
	Ans.	(b)														
_												00 145	20 140		14 > 15	

Q. 101. The principal stresses σ_1 , σ_2 and σ_3 at a point respectively are 80 MPa, 30 MPa and -40 MPa. The maximum shear stress is

(a) 25 MPa

(b) 35 MPa

(c) 55 MPa

(d) 60 MPa

Ans. (a)

Q. 102. The Poisson's ratio of a material which has Young's modulus of 120 GPa and shear modulus of 50 GPa, is (c) 0.3(b) 0.2(d), 0.4

(a) 0.1Ans. (b)

The shear force distribution in the beam is represented by

Q. 104. A thick cylinder is subjected to internal pressure of 100 N/mm². If hoop stress developed at the outer radius of the cylinder is 100 N/mm², the hoop stress developed at the inner radius is

(a) 100 N/mm^2

(b) 200 N/mm^2

(c) 300 N/mm^2

(d) 400 N/mm^2

Ans. (b)

Q. 105. The outside diameter of a hollow shaft is twice that of its inside diameter. The torque-carrying capacity of this shaft is M_{t} . A solid shaft of the same material has the diameter equal to the outside diameter of the hollow shaft. The solid shaft can carry a torque of M_{I} . The ratio M_t/M_t is

(a) $\frac{15}{16}$

 $(b)\frac{3}{4}$

 $(c)\frac{1}{2}$

 $(d)\frac{1}{16}$

Q. 106. Which one of the following pairs is correctly matched?

(a) Solid solution strengthening Increasing density of dislocations

(b) Dispersion hardening

Creating strained region in the crystal

(c) Strain-hardening

Creating particles to resist the movement of dislocations

(d) Precipitation-hardening

.... Creating particles by decreasing solubility of one phase in another

Ans. (d)

Q. 107. The alloy steel designated as 40 Cr 18 Ni 2 by Bureau of Indian Standards contains

(a) 0.4% C, 18% Cr and 2% Ni

(b) 4.0% C, 1.8% Cr and 0.2% Ni

(c) 0.4% C, 1.8% Cr and 2% Ni

(d) 0.4% C, 1.8% Cr and 0.2% Ni

Ans. (a)

Q. 10	8. 'Tempering' of que	nched maria	meitie	1						1259
_	(a) hardness of the m	neneu marte netal	insitie s	icei	18 necessar	y to imp	prove (he		
	(c) corrosion resistan		tal		(b) surfac	e texture	of the	metal		
An	s. (d)				(d) ductil	ity of the	metal			
Q. 10	9. The molecular weig	the of vinyl	chlorid	المالية	62.5 TH					
	chloride with a degi	ree of polyn	nerisati <i>a</i>	m o	- 04.3 Enu: f-20000 :::	s the me	olecula	r weig	ht of a p	oolyvinyl
	(a) $\frac{20000}{62.5}$., 62.5	5	,			•			
		$(b) \frac{62.5}{2000}$	K)		(c) 62.5	5×2000	0	(d) 2	0000	
	s. (c)									
Q. 110	D. Carbide-tipped cutting a composition of	ng tools are	manufa	chir	ed by nowe	lar mai	ا د د د ا			
•				Cluit	ed by powe	ici- meta	u tecni	nology	process a	ind have
•	(a) Zirconium-Tungs	ten (35%-659	%)		(b) Tungs	len carbi	de-Cot	ali (OO	7 100	
	(c) Aluminium oxide-	Silica (70%	-30%)		(d) Nickel	-Chromi	um-Tu	nasten /	((-10%) (30% 150	7. 55 0/ \
	S. (b)									
Q. 111	. Metch List-I (Name answer using the coo	of the Eler	nent) w	/ith	List-II (Cry	vstal Str	ucturo) and a	مال سام	
	answer using the coo	des given be	low the	e list	ls :	y sau ou	ucture.	, and s	elect the	correct
٠.	List 1									
	A. Fluorspar		•				st II			
	B. Alpha-Iron			1.	Body-cente					
	C. Silver			2.	Hexagonal		cked			
	D. Zinc			3.	Simple cut					
	Codes:			4.	Face-cente	red cubic	:			
	A B	C D								
	(a) 3 2	4 1	-		(15)	A	В	C	D	
	(c) 4 2	3 1			(b) (d)	4	1	3	2	
Ans.	· (d)				(11)	.,	1	4	2	
Q. 112.	Which of the follow state, as well as in so	ing factors	govern.	ealu	hilim at a		_			
	state, as well as in so	olid state?	e,overii	soru	omity of the	vo non-	errous	metals	both in	liquid
	 Crystal structure 				2. Relative	size fact	Or			
	3. Chemical-affinity fa	ctor	·		4 Rolativo					
	Select the correct answ	er using the	codes gi	iven	below:					
	Coaes:									
Ama	(a) 1, 2 and 3	(b) 2, 3 an	d 4		(c) I and	4		(d) 1, 2	2, 3 and 4	Į.
Ans.										
Q. 113.	A body having weigh helical spring of stiffr	nt of 1000 1	N is dr	oppe	ed from a t	neight o	f 10 c	m over	a close	coiled
	helical spring of stiffr (a) 5 cm		m. The	res	aiting actie	cuon of	spring	is nea	rly	conca
Ans.	• • • • • • • • • • • • • • • • • • • •	(b) 16 cm			(c) 35 cm		•	(<i>d</i>) 100) cm	
)							
Q. 114.	The diameter of shaft material. Assuming bo	A is twice	the di	amei	ter of shaft	\boldsymbol{B} and	both a	re mad	le of the	same
	material. Assuming both by B is	in the shalts	to rotat	e at	the same sp	eed, the	maxin	num po	wer trans	mitted
	(a) the same as that of A									
	(c) 1/8th of A	1			(b) half of A					
Ans.		• ,		((d) $\sqrt{4}$ th of A	١.				
									-	
							,			
										فتعمير يتحو
										/

Q. 115. The given figure (all dimensions are in mm) shows an I-section of the beam

> The shear stress at point P (very close to the bottom of the flange) is 12 MPa. The stress at point Q in the web (very close to the flange) is

(a) indeterminable due to incomplete data

(b) 60 MPa

(c) 18 MPa

(d) 12 MPa

Ans. (d)

Q. 116. A close-coiled helical spring is made of 5 mm diameter wire coiled to 50 mm mean diameter. Maximum shear stress in the spring under the action of an axial force is 20 N/mm². The maximum shear stress in a spring made of 3 mm diameter wire coiled to 30 mm mean diameter, under the action of the same force will be nearly

(a) 20 N/mm^2

(b) 33.3 N/mm²

(c) 55.6 N/mm²

(d) 92.6 N/mm²

Ans. (c)

Q. 117. A horizontal beam carrying uniformly distributed load is supported with equal overhangs as shown in the given figure

The resultant bending moment at the mid-span shell be zero if a/b is

(a) 3/4

(b) 2/3

(c) 1/2

Ans. (c)

Q. 118. A short column of symmetric cross-section made of a brittle material is subjected to an eccentric vertical load P at an eccentricity e. To avoid tensile stress in the short column, the eccentricity e should be less than or equal to

(a) h/12

(b) h/6

(d) h/2

Ans. (b)

Q. 119. A thin cylindrical shell is subjected to internal pressure p. The Poisson's ratio of the material of the shell is 0.3. Due to internal pressure, the shell is subjected to circumferential strain and axial strain. The ratio of circumferential strain to axial strain is

(b) 2.25

(c) 0.225

(d) 4.25

Q. 120. A cantilever of length L, moment of inertia I, Young's modulus E carries a concentrated load W at the middle of its length. The slope of cantilever at the free end is

$$(a) \frac{WL^2}{2EI}$$

Ans. (a)

I.E.S. (Objective)

MECHANICAL ENGINEERING-2002

PAPER - I

Q. 1. Which of the following is/are related to measure the discharge by a rectangular notch?

 $2.\,\frac{2}{3}\,Cd\cdot b\,\sqrt{2g}\cdot H^{3/2}$

 $4.\frac{2}{3} Cd \cdot b \sqrt{2g} \cdot H^{1/2}$

 $1.\frac{2}{3} Cd \cdot b \sqrt{2g} \cdot H^2$

 $3.\frac{2}{3} Cd \cdot b \sqrt{2g} \cdot H^{5/2}$

Selec	t the correct ans	wer from the codes	given below:	
Code				•
(a) 1	and 3	(b) 2 and 3	(c) 2 alone	(d) 4 alone
Ans. (b) M	leasure of discha	arge by a rectangula	r notch	
	$=\frac{2}{3}C$	$2d b \sqrt{2g} H^{3/2}$		
Q. 2. The of in ex	critical value of l ternal flows is ta	Reynolds number for aken as	transition from lam	inar to turbulent boundary layer
(a) 23	300	(b) 4000	$(c) 5 \times 10^5$	(d) 3×10^6
Ans. (a) C flows	ritical value of R is taken as 230	eynolds number for 0.	transition from lamii	nar to turbulent layer in external
Q. 3. The 1	ooundary layer f	low separates from t	the surface if	
	$\frac{d}{dy} = 0$ and $\frac{dp}{dx} = 0$		$(b) \frac{du}{dy} = 0 \text{ and } \frac{dp}{dx}$	> 0
$(c)\frac{du}{dy}$	$\frac{d}{dx} = 0$ and $\frac{dp}{dx} < 0$		(d) the boundary	layer thickness is zero
Ans. (b) B	oundary layer fl	ow separates from s	urface if velocity is	zero & pressure increases.
Q. 4. The la	aminar boundary la	ayer thickness, δ at any	y point x for flow over	r a flat plate is given by $\delta/x =$
(a) $\frac{0}{\sqrt{1}}$	664 Re _x	$(b)\frac{1.328}{\sqrt{\mathrm{Re}_x}}$	$(c)\frac{1.75}{\sqrt{\mathrm{Re}_{x}}}$	$(d) \frac{5.0}{\sqrt{\text{Re}_{\text{r}}}}$
Ans. $(d) \frac{\delta}{x}$	$r = 5.0/\sqrt{Re_x}$,	•
wnici	i is given by	Q, acceleration due to	o gravity g and head	H form a dimensionless group,
$(a)^{\frac{\sqrt{\ell}}{2}}$	$\frac{\partial^2 H^2}{\partial Q}$	(b) $\sqrt{\frac{Q}{gH}}$	$(c) \frac{Q}{\sqrt{g^3 H}}$	$(d) \frac{Q}{\sqrt{g^2 H}}$
Ans. (a) D	imensionless gro	oup for g, H and Q is	$\sqrt{gH^5}/Q$	
Q. 6. A mo is to t is ma	del test is to be our avel at a speed intained, so that I test to be cond	conducted in a water of 12 km/h deep und	tunnel using a 1 : 2 der sea surface. The sity is half that of se	00 model of a submarine, which water temperature in the tunnel ea water. At what speed is the totype? (d) 120 km/h
Ans. (d)	$\frac{{}_{S}L_{S}}{\gamma_{S}} = \frac{V_{m} L_{m}}{\gamma_{m}}, \ V_{m} =$	$= V_s \cdot \frac{L_s}{L_m} \cdot \frac{\gamma_m}{\gamma_s} = 12 \times 2$	$0 \times \frac{1}{2} = 120 \text{ km/h}$	
	N.			•

Q. 7	. A model test is to be conducted for an under water structure, which is likely to be exposed
	to strong water currents. The significant forces are known to be dependent on structure
	geometry, fluid velocity, fluid density and viscosity, fluid depth and acceleration due to
	gravity. Choose from the codes given below, which of the following numbers must match for
	the model with that of the prototype:

1. Mach number

2. Weber number

3. Froude number

4. Reynolds number

Codes:

(a) 3 alone

(b) 1, 2, 3 and 4

(c) 1 and 2

(d) 3 and 4

Ans. (d) Since gravitational and viscosity forces are significant in this case, Froude & Reynold numbers must match for model and prototype.

Q. 8. During subsonic, adiabatic flow of gases in pipes with friction, the flow properties go through particular mode of changes. Match List-I (Flow properties) with List-II (Mode of changes) and select the correct answer using the codes given below the lists:

List I

List II

(Flow Properties)

(Mode of changes)

A. Pressure

(Mode of changes)

B. Density

Increases in flow direction
 Decreases with flow direction

- C. Temperature
- D. Velocity

Codes:

	Α	В	C	D		Α	В	C	D
(a)	1	1	2	2	(b)	2	2	2	1.

Ans. (c) In subsonic, adiabatic flow in pipe with friction, temperature increases with flow direction and pressure, density and velocity decrease.

- Q. 9. Which of the following statements is/are true in case of one-dimensional flow of perfect gas through a converging-diverging nozzle?
 - 1. The exit velocity is always supersonie
 - 2. The exit velocity can be subsonic or supersonic
 - 3. If the flow is isentropic, the exit velocity must be supersonic
 - 4. If the exit velocity is supersonic, the flow must be isentropic

Select the correct answer from the codes given below:

Codes:

(a) 2 and 4

(b) 2, 3 and 4

(c) 1, 3 and 4

(d) 2 alone

Ans. (a) Statements (2) and (4) are correct.

- Q. 10. In a normal shock in a gas:
 - (a) the stagnation pressure remains the same on both sides of the shock
 - (b) the stagnation density remains the same on both sides of the shock
 - (c) the stagnation temperature remains the same on both sides of the shock
 - (d) the Mach number remains the same on both sides of the shock

Ans. (c) In a normal shock in a gas, the stagnation temperature remains same on both sides of the shock.

A				MATION	SOLVED	PAPERS	1		Ĺ		126
Q. 11	(a) (b) 1 (c) i	normal sh causes a c may occu is more se moves wi	disruption r only in evere the	n a dive an an ob	rging pass	age ck					
Ans							oblique sh	nck			
Q. 12	Flui extr. (ii).	id flow n acting en They are	nachine ergy fr classi	s are u om the	sing the	princip	e of either	(i) sur	pply en	ergy to the	e fluid, or (ii) of both (i) and
		compresso					(b) hydrau		oines		
		orque cor					(d) wind r	nills			
		Torque co				functior	is.				
Q. 13.	1. Pe 2. Fr 3. K	sider the elton whe rancis turk aplan turk ch of the les:	el is a ta bine is a bine is a	angentia in axial : i radial f	I flow imp flow react low reacti	ion turb	ine.				
	(a) 1	and 3		(b)	lalone		(c) 2 alo	ne		(d) 3 alo	
Ans.	(b) S	Statement	about			nne is c				(a) 3 ald	anc .
	using	g the cod	les give	n belov	v the lists	6 :	т (<i>Арр</i> псан		st II	select the c	orrect answer
		(F	Hydraul	ic Turbi	ne)			(Applic	ation A	rea)	
	A. B. C.	Pelton T Francis ' Kaplan '	Turbine			1. 2. 3.	Low head, Medium he High head,	large d	ischarg dium di	e scharge	
	Code	es:							•		
		Α	В	С				Α	В	C,	
	(a)	2	3	1			(b)	2	1	3,	
	(c)	3	1	2			(d)	3	2	1,	
Ans.	(d) Pahead	elton — & discha	High h arge.	ead, lov	v dischar	ge, Kap				arge, Franc	cis - medium
0 15	Effici	C. MIICCI I	Pelton s	wheel sl	hall be m	aximun	if the ratio	o of jet	veloci	ty to tange	ntial velocity
				(b) 1						(d) 4	
((a) 1/						(c) 2				
((a) 1/		um eff		of Pelton	wheel,		y shoul	d be tv	vice the wh	eel velocity.
Ans. (Q. 16.	(a) 1/2 (c) Fo The 1 = 180	or maxim maximun) – β)	n effic	iciency iency in	n the cas	se of P	jet velocit elton whee	el is (a	d be tw	vice the wh	n of the jet
Ans. (Q. 16. 7	(a) $\frac{1}{2}$ (c) For The 1 = 180 (a) $\frac{1}{2}$	or maximum $(\beta - \beta)$ $(\beta - \cos \beta)$ $(\beta - \cos \beta)$	n effic	iciency in the contract of th	n the cas	se of P	jet velocit	el is (a	d be tw	vice the what f deflection $(d) \frac{1+cc}{4}$	n of the jet
Ans. (Q. 16. '	(a) $\frac{1}{2}$ (c) For The 1 = 180 (a) $\frac{1}{2}$	or maxim maximun) – β)	n effic	iciency in the contract of th	n the cas	se of P	jet velocit elton whee	el is (a	d be tw	f deflectio	n of the jet
Ans. (Q. 16. '	(a) $\frac{1}{2}$ (c) For The 1 = 180 (a) $\frac{1}{2}$	or maximum $(\beta - \beta)$ $(\beta - \cos \beta)$ $(\beta - \cos \beta)$	n effic	iciency in the contract of th	n the cas	se of P	jet velocit elton whee	el is (a	d be tw	f deflectio	n of the jet

•

	are proportional to	
	(a) $H^{1/2}$, $H^{1/2}$, $H^{3/2}$	(b) $H^{3/2}$, $H^{1/2}$, $H^{1/2}$
	$(c) H^{1/2}, H^{3/2}, H^{1/2}$	$(d) H^{3/2}, H^{1/2}, H$
Ans.	(b) Power $\propto H^{3/2}$, speed & discharge are $\propto H^{3/2}$	$H^{1/2}$
Q. 18.	In the phenomenon of cavitation, the charac	teristic fluid property involved is
	(a) surface tension	(b) viscosity
	(c) bulk modulus of elasticity	(d) vapour pressure
Ans.	(d) In cavitation, vapour pressure of fluid is	characteristic property.
Q. 19.	it is operated at 2000 RPM, its power consu (a) 4 kW, 50 m of water	kW and generates head of 10 m of water. When imption and head generated would be (b) 6 kW, 20 m of water (d) 8 kW, 40 m of water
Ans.	(d) $H \propto N^2$ and $HP \propto N^3$	
	A centrifugal pump gives maximum efficien	cv when its blades are
Q. 20.	(a) bent forward	(b) bent backward
	(c) straight	(d) wave shaped
Ans.	(b) Centrifugal pump has maximum efficien	cy when its blades are bent backwards.
		f turbomachines, which of the following relation-
	(a) $\frac{H}{ND^3}$ = constant; $\frac{Q}{N^2D^2}$ = constant	(b) $\frac{Q}{D^2 \sqrt{H}} = \text{constant}$; $\frac{H}{N^3 D} = \text{constant}$
	(c) $\frac{P}{QH}$ = constant; $\frac{H}{N^2D^2}$ = constant	$(d) \frac{NQ^{\frac{1}{2}}}{H^{\frac{3}{2}}} = \text{constant} \; ; \; \frac{NP^{\frac{1}{2}}}{H^{\frac{3}{4}}} = \text{constant}$
Ans	. (d) $\frac{N\sqrt{Q}}{H^{3/2}}$ and $\frac{N\sqrt{P}}{H^{3/4}}$ as constants need to be sa	tisfied for design of turbomachines.
Q. 22.	The correct sequence of the centrifugal pun (a) Impeller, Suction pipe, Foot valve and strai (b) Foot valve and strainer, Suction pipe, Impel (c) Impeller, Suction pipe, Delivery pipe, Foot (d) Suction pipe, Delivery pipe, Impeller, Foot	ller, Delivery pipe valve and strainer
Ans	. (b) Correct sequence is valve, strainers, suc	tion pipe, impeller, delivery pipe.
Q. 23	A centrifugal pump driven by a directly coutobe connected to another motor of 2900-r (a) 6 kW (b) 12 kW	pled 3 kW motor of 1450-rpm speed, is proposed pm speed. The power of the motor should be (c) 18 kW (d) 24 kW
Ans	4. (d) $P \propto (N_2/N_1)^3$ and $P = 3 \times 2^3 = 24$ kW.	

Q. 24. A draft tube is used in a reaction turbine

(d) to streamline the flow in the tailrace

(a) to guide water downstream without splashing

(b) to convert residual pressure energy into kinetic energy (c) to convert residual kinetic energy into pressure energy

Ans. (c) Draft tube in reaction turbine converts residual K.E. into pressure energy.

Q. 17. If H is the head available for a hydraulic turbine, the power, speed and discharge, respectively

Q. 25. A hydraulic press has a ram of 20 cm diameter an	nd a plunger of 5 cm diameter. The force											
required at the plunger to lift a weight of 16×10^4	N shall be:											
(a) $256 \times 10^4 \text{ N}$ (b) $64 \times 10^4 \text{ N}$ (c)	$4 \times 10^4 \mathrm{N}$ (d) $1 \times 10^4 \mathrm{N}$											
Ans. (d) Force at plunger = $16 \times 10^4 \times \left(\frac{5}{20}\right)^2 = 1 \times 10^4 \text{ N}$												
Q. 26. Blowing down of boiler water is the process to (a) reduce the boiler pressure (b) increase the steam temperature	•											
(c) control the solids concentration in the boiler water (d) control the drum level	(c) control the solids concentration in the boiler water (d) control the drum level											
Ans. (c) Blow down of boiler water controls the solid c	oncentration.											
Q. 27. A device which is used to drain off water from stea	im pipes without escape of steam is called											
(a) Steam separator (b) Ste (c) Pressure reducing valve (d) Inj	eam trap ector											
Ans. (b) Steam trap enables water to be drained off with	h escape of steam.											
Q. 28. Match List-I (Type of coal) with List-II (Coal propute codes given below the lists:	erties) and select the correct answer using											
List I	List II											
(Type of Coal)	(Coal properties)											
A. Lignite 1. Artific	ial fuel derived from coal											
B. Anthracite 2. Conta	ins inflammable gas (volatile) and burns with flame											
C. Bituminous 3. Very h	nard and high heating value											
	High ash content and less volatile matter											
Codes:												
A B C D	A B C D											
	b) 4 1 2 3 d) 4 3 2 1											
(c) 2 1 4 3 (d) Ans. (a) A-2-B-3, C-4, D-1 is right matching.	(d) 4 3 2 1											
•												
Q. 29. Pressure reaches a value of absolute zero (a) at a temperature of -273 K												
(b) under vacuum condition												
(c) at the earth's centre												
(d) when molecular momentum of system becomes zer	ro											
Ans. (d) Absolute zero pressure is attained when molecu	ılar momentum of system is zero.											
Q. 30. A reversible engine operates between temperature	as T and T_2 . The energy rejected by this											
engine is received by a second reversible engine at	temperature T_2 and rejected to a reservoir											
at temperature T_3 . If the efficiencies of the engine	s are same then the relationship between											
T_1 , T_2 and T_3 is given by												
(a) $T_2 = \frac{(T_1 + T_3)}{2}$ (b) $T_2 = \sqrt{(T_1^2 + T_3^2)}$ (c) $T_3 = \sqrt{(T_1^2 + T_3^2)}$	$T_2 = \sqrt{T_1 T_3}$ (d) $T_2 = \frac{(T_1 + 2T_3)}{3}$											
Ans. (c) $1 - \frac{T_2}{T} = 1 - \frac{T_3}{T}$ or $T_2^2 = T_1 T_3$												

Q. 31. The heat absorbed or rejected during a polytropic process is equal to

$$(a)\left(\frac{\gamma-n}{\gamma-1}\right)^{\frac{1}{2}} \times \text{work done}$$

$$(b)\left(\frac{\gamma-n}{n-1}\right)\times$$
 work done

$$(c)\left(\frac{\gamma-n}{\gamma-1}\right)\times$$
 work done

$$(d) \left(\frac{\gamma - n}{\gamma - 1}\right)^2 \times \text{work done}$$

Ans. (c) Heat during polytropic process = $\frac{\gamma - n}{\gamma - 1} \times$ work done

Q. 32. A system comprising of a pure substance executes reversibly a cycle 1-2-3-4-1 consisting of two isentropic and two isochoric processes as shown in the Fig. 1.

> Which one of the following is the correct representation of this cycle on the temperature-entropy coordinates?

Ans. (c) Curve at (C) is right one.

Q. 33. With increase of pressure, the latent heat of steam

(a) remains same

(b) increases

(c) decreases

(d) behaves unpredictably

Ans. (c) With increase of pressure, LH of steam decreases (Refer shape of Mollier diagram).

- Q. 34. Consider the following statements regarding the throttling process of wet steam: 1. The steam pressure and temperature decrease but enthalpy remains constant.
 - 2. The steam pressure decreases, the temperature increases but enthalpy remains constant.
 - 3. The entropy, specific volume, and dryness fraction increase.
 - 4. The entropy increases but the volume and dryness fraction decrease.

Which of the above statements are correct?

(a) 1 and 4

(b) 2 and 3

(c) 1 and 3

(d) 2 and 4

Ans. (b) During throttling of wet steam, pressure decreases, temperature, entropy, sp. volume, dryness fraction increase, and enthapy remains constant.

Q. 35. Availability function for a closed system is expressed as:

(a)
$$\phi = u + p_o v - T_o S$$

(b)
$$\phi = du + p_a dv + T_a ds$$

(c) $\phi = du + p_a dv - T_a ds$

(d)
$$\phi = u + p_o v + T_o S$$

Ans. (c) Availability function for a closed system is $\phi = du + p_o dV - T_o dS$

Q. 36. T ds equation can be expressed as:

(a)
$$T_{ds} = C_v dT + \frac{T\beta dv}{k}$$

(b)
$$T_{ds} = C_v dT + \frac{T}{L} dv$$

(c)
$$T_{ds} = C_v dT + \frac{Tk}{\beta} dv$$

(d)
$$T_{ds} = C_v dT + \frac{T\beta}{k} dp$$

Ans. (a) $T_{ds} = C_v dT + T\beta dv/k$.

Q. 37. A reversible heat engine receives 6 kJ of heat from thermal reservoir at temperature 800 K, and 8 kJ of heat from another thermal reservoir at temperature 600 K. If it rejects heat to a third thermal reservoir at temperature 100 K, then the thermal efficiency of the engine is approximately equal to:

(a) 65%

(b)75%

(c) 80%

(d) 85%

Ans. (d) Heat is received at $(800 \times 6 + 600 \times 8)/14 = 685^{\circ}$ K

 $\eta = (685 - 100)/685 \simeq 85\%$

Q. 38. The value of compressibility factor for an ideal gas may be

1. less or more than one

2. equal to one

3. zero

4. less than zero

The correct value(s) is/are given by

(a) 1 and 2

(b) 1 and 4

(c) 3 only

(d) 1 only

Ans. (d) Value of compressibility factor may be less or more than one.

Q. 39. Which one of the following functions represents the Clapeyron equation pertaining to the change of phase of a pure substance?

 $(a) f(T, p, h_{fg})$

 $(b) f(T, p, h_{fg}, v_{fg})$

 $(c) f(T, p, h_{fg}, s_{fg})$

(d) $f(T, p, h_{fg}, s_{fg}, v_{fg})$

Ans. (b) Clapeyron equation : $f(T, p, h_{fg}, V_{fg})$

Q. 40. In an air standard Otto cycle, r is the volume compression ratio and γ is an adiabatic index $\left(\frac{C_p}{C_v}\right)$, the air standard efficiency is given by

(c) $\eta = 1 - \frac{1}{\frac{\gamma - 1}{r - 2r}}$ (d) $\eta = 1 - \frac{1}{\frac{\gamma - 1}{r - 2r}}$

Ans. (a) $\eta_{ono} = 1 - \frac{1}{r^{\gamma - 1}}$

0.41.

The correct sequence of the given four cycles on T-s plane in Figures (1), (2), (3), (4) is

(a) Rankine, Otto, Carnot and Diesel

(b) Rankine, Otto, Diesel and Carnot

(c) Otto, Rankine, Diesel and Carnot

(d) Otto, Rankine, Carnot and Diesel

Ans. (b) 1- Rankine, 2-eato, 3-Diesel, 4-Carnot

Q. 42. The main advantage of a reheat Rankine cycle is

(a) reduced moisture content in L.P. side of turbine

(b) increased efficiency

268		•	OBJECTIVE TYPE Q	UESTIONS AND ANSWERS					
	(c) reduced load on conde (d) reduced load on pump								
Ans.	(a) Main advantage of	rehaeating is to redu	ce moisture content in LP	blading.					
		thermal efficiency of	ncy of Otto, Diesel and Dual cycle, when they have						
	(a) $\eta_{otto} > \eta_{diesel} > \eta_{dual}$		(b) $\eta_{diesel} > \eta_{dual} > \eta_{otto}$						
	(c) $\eta_{dual} > \eta_{diesel} > \eta_{otto}$		(d) $\eta_{otto} > \eta_{dual} > \eta_{diesel}$						
Ans.	(d) For same compressi	on ratio and heat rej	ected, $\eta_{otto} > \eta_{dual} > \eta_{diesel}$						
			ression ratio, ρ is the fue	l cut-off ratio and ν is					
	the adiabatic index $\left(\frac{C_p}{C_p}\right)$	Its air standard e	fficiency is given by	Total and pro-					
	the adiabatic index $\left(\frac{C_p}{C_v}\right)$ $(a) \eta = 1 - \left\{\frac{1}{\gamma r^{\gamma}} \cdot \frac{(\rho^{\gamma} - 1)}{(\rho - 1)^{\gamma}}\right\}$	$\left(\frac{\mathbf{p}'}{\mathbf{p}}\right)$	$(b) \eta = 1 - \left\{ \frac{1}{\gamma r^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \cdot \frac{(\rho^{\gamma - 1})^{\gamma - 1}}{(\rho - 1)^{\gamma -$	$\left\{ -\frac{1}{1}\right\}$					
	(c) $\eta = 1 - \left\{ \frac{1}{\gamma r^{\gamma - 1}} \cdot \frac{(\rho^{\gamma} r^{\gamma - 1})}{(\rho - 1)^{\gamma}} \right\}$	_	$(d) \eta = 1 - \left\{ \frac{1}{\gamma r^{\gamma}} \cdot \frac{(\rho^{\gamma - 1} - 1)^{\gamma - 1}}{(\rho - 1)^{\gamma - 1}} \right\}$	<u>1)</u> }					
Ans	$(c) \eta_{diesel} = 1 - \left\{ \frac{1}{\gamma r^{\gamma - 1}} \right\}$	$\left\{\frac{(\rho^{\gamma}-1)}{(\rho-1)}\right\}$							
Q. 45.		ratio by volume for (b) 17.16:1	combustion of methane in (c) 9.52:1	air is: (d) 10.58:1					
Ans.	(b) Stoichiometric air-fu	iel ratio by volume of	of combustion of methane	in air is 17.16:1.					
Q. 46.	and chemically correct	petrol-air mixture is fuel-air ratio is (b) 1.0	minimum when the ratio						
Ana	• •	` '	(c) 1.2	(d) 1.5					
			ically correct fuel air rati						
Q. 47.	 Iso-octane is assigned a Normal heptane is assigned a Iso-octane is assigned a Normal heptane is assigned a by the bound of the above states 	a rating of zero octane gned a rating of hundr a rating of hundred oct gned a rating of zero o ments are correct?	ed octane number. tane number. octane number.						
Anc	(c) Statements 3 and 4	(b) 2 and 3	(c) 3 and 4	(d) 4 and 1					
			4						
	In spark ignition engine (a) increasing the compre (c) retarding the spark ad-	ssion ratio	educed by: (b) increasing the cooling v (d) increasing the inlet air t						
Ans.	(c) In SI engines knock	is encouraged by ad	vanced spark timing.						

Ans. (c) In CI engine, tendency of knocking is reduced by injection of fuel just before TDC.

Q. 50. Consider the following statements relevant to the ignition system of SI engine: 1. Too small a dwell angle will lead to the burning of condenser and contact points.

(b) decrease in jacket water temperature

(d) decrease in injection pressure

Q. 49. The tendency of knocking in CI engine reduces by (a) high self-ignition temperature of fuel

2. Too small a dwell angle will result in misfiring.

(c) injection of fuel just before TDC

3. Too large a dwell angle will result in burning of condenser and contact points.4. Too large a dwell angle will result in misfiring.Which of the above statements are correct?

Ans. (c) Statements 3 and 4 are correct.

Q. 51. The volumetric efficiency of a well designed S.I. engine is in the range of (a) 40%—50% (b) 50%—60% (c) 60%—70% (d) 70%—90%

Ans. (d) Volumetric η of well designed S.I. engine is of the order of 70-90%.

Q. 52.

Variation of specific fuel consumption with fuel-air ratio for spark ignition engine is represented by which of the curves shown above?

(b) 2 and 3

(a) curve 1

(a) 1 and 2

- (b) curve 2
- (c) curve 3
- (d) curve 4

Ans. (c) Curve 3 is correct because specific fuel consumption is minimum for lean mixture.

(d) 4 and 1

Q. 53. For a jet propulsion unit, ideally the ratio of compressor work and turbine work is

(a) 2

- (b) 1
- (c) not related to each other
- (d) unpredictable

(c) 3 and 4

Ans. (b) For jet proportion unit, ideally the compressor work and turbine work are equal.

Q. 54. A 0.5 m thick plane wall has its two surfaces kept at 300°C and 200°C. Thermal conductivity of the wall varies linearly with temperature and its values at 300°C and 200°C are 25 W/mK and 15 W/mK, respectively. Then the steady heat flux through the wall is

- (a) 8 kW/m²
- $(b) 5 \text{ kW/m}^2$
- $(c) 4 \text{ kW/m}^2$
- (d) 3 kW/m²

Ans. (c) Average thermal conductivity $k_m = \frac{25 + 15}{2} = 20 \text{ W/mK}$

$$\frac{Q}{A} = \frac{k_m (t_1 - t_2)}{\Delta x} = \frac{20 \times (300 - 200)}{0.5} = 4 \text{ kW/m}^2$$

Q. 55. A 320 cm high vertical pipe at 150°C wall temperature is in a room with still air at 10°C. This pipe supplies heat at the ratio of 8 kW into the room air by natural convection. Assuming laminar flow, the height of the pipe needed to supply 1 kW only is

- (a) 10 cm
- (b) 20 cm
- (c) 40 cm
- (d) 80 cm

Ans. (b)
$$Q \propto h \times l$$
, and $h \propto \left(\frac{\Delta T}{l}\right)^{1/4}$; $\therefore Q \propto l^{3/4}$; or $\frac{8}{1} = \left(\frac{320}{L}\right)^{3/4}$ and $L = 20$ cm.

Q. 56. The average Nusselt number in laminar natural convection from a vertical wall at 180°C with still air at 20°C is found to be 48. If the wall temperature becomes 30°C, all other parameters remaining same, the average Nusselt number will be

- (a) 8
- (b) 16
- (c) 24
- (d) 32

Ans. (c) $Nu_{av} \propto Gr^{1/4}$ and $Gr \propto \Delta T$

Thus ratio of Grashoft number in two cases is $\propto \frac{30-20}{180-20} \propto \frac{1}{16}$

 $\therefore Nu_{av} \propto \left(\frac{1}{16}\right)^4 \propto \frac{1}{2}, \qquad \therefore Nu_{av} \text{ for second case} = \frac{48}{2} = 24.$

Q. 57.	A fluid of thermal conductivity 1.0 W/m-K flows in fully developed flow with Reynolds
	number of 1500 through a pipe of diameter 10 cm. The heat transfer coefficient for uniform
	heat flux and uniform wall temperature boundary conditions are, respectively,

(a) 36.57 and 43.64
$$\frac{W}{m^2K}$$

(b) 43.64 and 36.57
$$\frac{W}{m^2 K}$$

(c) 43.64
$$\frac{W}{m^2 K}$$
 for both the cases

(d)
$$36.57 \frac{W}{m^2 K}$$
 for both the cases

Ans. (b) For constant heat flux as per Bayley,
$$h = 4.364 \frac{k}{D} = 4.364 \times \frac{1.0}{0.1} = 43.64 \frac{W}{m^2 K}$$
, and for constant wall surface temperature, $h = 3.66 \frac{k}{D} = 3.66 \times \frac{1.0}{0.1} = 36.6 \frac{W}{m^2 K}$

Q. 58. Two large parallel grey plates with a small gap, exchange radiation at the rate of 1000 W/m² when their emissivities are 0.5 each. By coating one plate, its emissivity is reduced to 0.25. Temperatures remain unchanged. The new rate of heat exchange shall become

(a)
$$500 \text{ W/m}^2$$

$$(b) 600 \,\mathrm{W/m^2}$$

(c)
$$700 \text{ W/m}^2$$

$$(d) 800 \, \text{W/m}^2$$

Ans. (b)
$$Q = 1000 \times \frac{\frac{2}{\epsilon_1} - 1}{\left(\frac{1}{\epsilon_1} - 1\right) + \left(\frac{1}{\epsilon_2} - 1\right) + 1} = \frac{1000 \times \left(\frac{2}{0.5} - 1\right)}{\frac{1}{0.5} - 1 + \frac{1}{0.25} - 1 + 1} = \frac{3 \times 10^3}{5} = 600 \frac{\text{W}}{\text{m}^2}$$

Q. 59. Two long parallel plates of same emissivity 0.5 are maintained at different temperatures and have radiation heat exchange between them. The radiation shield of emissivity 0.25 placed in the middle will reduce radiation heat exchange to

(a)
$$\frac{1}{2}$$

$$(b)\frac{1}{4}$$

$$(c)\frac{3}{10}$$

$$(d)\frac{3}{5}$$

Ans. (c) Reduction in radiation heat exchange due to introduction of shield

$$=\frac{\frac{2}{\varepsilon_{1}}-1}{2\left(\frac{1-\varepsilon_{1}}{\varepsilon_{1}}\right)+2\left(\frac{1-\varepsilon_{2}}{\varepsilon_{2}}\right)+2}=\frac{\frac{2}{0.5}-1}{2\times\frac{0.5}{0.5}+2\times\frac{0.75}{0.25}+2}=\frac{3}{10}$$

Q. 60. Match List-I (Type of radiation) with List-II (Characteristic) and select the correct answer using the codes given below the lists:

List I
(Type of radiation)

List II
(Characteristic)

A. Black body

(Characteristic)

Emissivity does not depend on wavelength

B. Grey body

2. Mirror like reflection

C. Specular

3. Zero reflectivity

D. Diffuse

4. Intensity same in all directions

Codes:

Ans. (d) Correct matching is A-3, B-1, C-2, D-4.

Ans. (a) Correct matching is A-2, B-3, C-1, D-4.

Q. 61. Match List-I (Type of heat transfer) with List-II (Governing dimension)

(, ,	sele	ct the co	rrect ar	iswer u	sing the	codes	given	below	the lis	ts :	SIONIES	s parame	eter) and	
				List I						List II				
					ransfer)			(Govern	ning dir	nension	less par	ameter)		
	Α.	Forced	convect	tion		,	1. Reynolds, Grashof and Prandtl number							
	В.	Natural					2. Reynolds and Prandtl number							
	. C.				ed convect		on 3. Fourier modulus and Biot number							
	D.	Unstead at surfac		ection w	ith conve	ntion								
	Cod	les :												
		Α	В	C	D				Α	В	С	D	•	
	(a)	2	1	4	D 3 3			(b)	3	4 1	1	2		
	(c)							(d)	3	1	4	2		
		Correct m												
Q. 62	The root	insulated temperat	tip tenure of	θ_o is	re of a red	tangul	ar lon	gitudin	al fin h	aving a	n exces	s (over a	ambient)	
	(a) 0	o tanh (mi	<i>I</i>)	(b)	θ_o		((c) $\frac{\theta_o \tan \theta_o}{\epsilon}$	nh (<i>ml</i>)		(d) —	$\frac{\theta_o}{\cosh(ml)}$		
Ans	. (c) I	insulated t	ip temp	erature	$=\frac{\theta_0 \tan \frac{\theta_0}{m}}{m}$	$\frac{h(ml)}{l}$.		(mi)		c	osn (mi)		
Q. 63.	Cons	sider the	followi	ng stat	ements p	ertainin	g to	large h	eat tran	nsfer ra	te using	fins		
	I. Fi	ns should	be used	d on the	side whe	re heat	transf	er coeff	icient i	s small.		,	-	
	2. Lc	ong and th	ick fins	should	be used.								* .	
	3. 3n 4 Th	ort and the	un Iins :	should i	be used.	ال السياس								
	Whic	h of the a	bove st	atemen	ts are com	snould	i be ia	rge.				•		
		, 2 and 3			1, 2 and 4		(c) 2, 3 a	nd 4		(d) 1	3 and 4		
Ans.	(d) C	Only wron	ng state	ment i	s that lon	g and	-			nced	(ω) 1,	J and 4		
Q. 64.	Using	g thermal	-electri	cal ana	logy in h	eat tran	sfer	match I	iet-I	o uscu. Flactric	al auan		at Tita	
	II (T	hermal qu	uantitie	s) and	select the	corre	ct ans	wer us	ing the	codes	aı quan given h	elow the	un List- e lists •	
	•			st I	•					ist II	5			
		(El		l quanti	ties)			(7		ısı 11 l quanti	ties)			
	A.	Voltage				1.	The	rmal res						
	B.	Current				2.		rmal car						
	C.	Resistano	ce			3.		t flow	Jucity			,	,	
	D.	Capacita	nce			4.		peratur	e					
	Code	s:						•						
		Α	В	С	D				Α	В	С	D		
	(a)	2	3	1	4					_	_			
	(~)		,	1	4			(b)	4	1	3	2		

(d) 4 3 1 2

- Q. 65. Prandtl number of a flowing fluid greater than unity indicates that hydrodynamic boundary layer thickness is
 - (a) greater than thermal boundary layer thickness
 - (b) equal to thermal boundary layer thickness
 - (c) greater than hydrodynamic boundary layer thickness
 - (d) independent of thermal boundary layer thickness
- Ans. (a) If $P_r > 1$, then hydrodynamic boundary layer thickness > thermal boundary layer thickness.
- Q. 66. A standard vapour compression refrigeration cycle consists of the following 4 thermodynamic processes in sequence:
 - (a) isothermal expansion, isentropic compression, isothermal compression and isentropic ex-
 - (b) constant pressure heat addition, isentropic compression, constant pressure heat rejection and isentropic expansion
 - (c) constant pressure heat addition, isentropic compression, constant pressure heat rejection and constant enthalpy expansion
 - (d) isothermal expansion, constant pressure heat addition, isothermal compression and constant pressure heat rejection
 - Ans. (c) Correct sequence of vapour compression refrigeration cycle is:

Constant pressure heat addition, Isentropic compression, constant pressure heat rejection, and constant enthapy expansion.

Q. 67. Subcooling heat exchanger is used in a refrigeration cycle. The enthalpies at condenser outlet and evaporator outlet are 78 and 182 kJ/kg respectively. The enthalpy at outlet of isentropic compressor is 230 kJ/kg and enthalpy of subcooled liquid is 68 kJ/kg. The COP of the cycle is (a) 2.37(b) 2.16(d) 3.5(c) 3.0

Ans. (a) $COP = \frac{\text{enthalpy at evaporator outlet } - \text{enthalpy of sub-cooled liquid}}{\text{enthalpy at outlet of compressor } - \text{enthalpy at evaporator outlet}}$

$$=\frac{182-68}{230-182}=\frac{114}{48}=2.37$$

Q. 68. Match List-I (refrigeration equipment) with List-II (Characteristic) and select the correct answer using the codes given below the lists:

List I List II (Refrigeration equipment) (Characteristic) Hermetically sealed compressor Capillary tube Semi-hermetically sealed compressor Both compressor and motor enclosed in a shell or casing Open type compressor Both compressor and motor enclosed in a shell or casing with a removable cylinder cover Expansion device Driving motor not enclosed in a shell or casing and connected to the shaft driving the compressor

Codes:

	Α	В	C	D		Α	В	C	D
(a)	1	4	. 3	2	(b)	2	3	4	1
(c)	1	3	4	2	(d)	2	4	3	1

Ans. (b) Right matching is A-2, B-3, C-4, D-1